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An original local multigrid method for solving incompressible two-phase flow
with surface tension is described. The dynamics of the interface are resolved on a
hierarchy of structured and uniform grids (orthogonal Cartesian meshes). A new type
of composite boundary condition is proposed to solve the dynamics of the multigrid
calculation domains. The interface tracking is described by a TVD VOF algorithm
and the equations of motion are solved using an augmented Lagrangian method.
The surface tension is calculated using a continuous surface force method. The one-
cell local multigrid method is compared to relevant analytical scalar advection tests.
Several classical two-phase flow problems, including nonlinear drop oscillations,
Rayleigh–Taylor instabilities, and the drop impact on liquid film, have also been
considered. The local character of the method and the differences between a single-
grid and a multigrid solution are discussed. For unsteady problems, such as the
Rayleigh–Taylor instability, the memory costs and the computational time have been
reduced by up to 50%. c© 2000 Academic Press
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1. INTRODUCTION

Experimental and theoretical studies of incompressible multiphase viscous flows, in-
volving three-dimensional free surface instabilities or very strong interface tearing and
stretching, are difficult to perform. However, free surface flows clearly need to be better
understood to develop improved models for industrial applications. Numerical methods
have begun to be used to simulate the flow dynamics of the problem. Numerous research
projects are now under way to improve both the modelling and the understanding of free
surface flows.

Two approaches have generally been used to perform direct numerical simulations of two-
phase flows. In the Lagrangian approach, the grid follows the motion of the interface. An

172

0021-9991/00 $35.00
Copyright c© 2000 by Academic Press
All rights of reproduction in any form reserved.



ONE-CELL LOCAL MULTIGRID METHOD 173

adaptative grid is first built to fit the interface between the two phases. The conservation equa-
tions are then solved for the “discretized fluid.” Finally a remodelling of the grid is carried
out with the grid being moved and deformed to take into account the Lagrangian evolution
of the free surface. This technique, which uses finite element or curvilinear finite volume
discretizations, has been adapted to thin process studies, occurring near slightly deform-
ing interfaces (Magnaudetet al. [27]). However, in three-dimensional unsteady flows with
strong interface deformations, the Lagrangian approach proves too expensive in calculation
time. When the free surface stretching is too high, it becomes very difficult to implement
due to the frequent remeshing required. In the Eulerian approach, a single Navier–Stokes
equation system is solved on a fixed Cartesian grid over the whole computational domain,
with variable density and viscosity. Different techniques are used to take into account the
evolution of the phase distribution, for example, the marker method (Daly [8, 9], Rider and
Kothe [31], Popinet and Zaleski [30]), the level-set method (Sussman and Smereka [35]),
or the volume of fluid method (Hirt and Nichols [18], Youngs [52], or Rudman [32]). At
each calculation time, they all allow the free surface evolution associated with the velocity
field to be precisely predicted. The physical properties of the unique mixed fluid are then
redistributed according to the new phase arrangement. Finite volumes on a MAC (marker
and cell) grid are commonly used to discretize the Navier–Stokes equation system. Even if
the Eulerian approach is less precise than the Lagrangian one, it allows the direct numerical
simulation of three-dimensional multiphase flow problems to be easily programmed when
the interface is strongly distorted.

In spite of the methods described above, significant unsolvable problems still exist in fluid
mechanics (Scardovelli and Zaleski [33]). Difficulties arise when large three-dimensional
simulations are performed at high Reynolds numbers because thin boundary layers need
to be accurately resolved. For example, the flattening of a water droplet on a water film
in a gaseous medium or a liquid metal particle crush on a solid substrate is still unsolved.
Owing to computer memory limits, the existing surface- or volume-tracking methods do
not provide suitable solutions for three-dimensional nonsymmetric problems. On the one
hand, the gigantic grids generated cannot be stored on most computers (even those with
parallel architectures), and on the other hand, the extensive computational time makes the
computations impracticable. The only suitable solution is to consider symmetries in the
problem in question and to couple the numerical solver with parallel algorithms. With such
an approach, Gueyffier and Zaleski [12, 13] were able to simulate the splashing of a drop
on a liquid film in three dimensions.

To reduce the number of computational nodes several authors have suggested the idea of
refining the grid near the free surface, since most of the phenomena are concentrated near
the interface. Locket al. [25] proposed an Eulerian unstructured finite element method,
which locally adapts the mesh near the interface at each iterative time step. However, for
three-dimensional simulations, the problem of lack of memory remains because the linear
system generated is still very large. A full approximation storage (FAS) multigrid technique
was introduced by Thompson and Lezeau [39] for two-dimensional, steady, incompressible,
viscous multiphase flows. However, this method is neither local in space nor adaptive over
time. It is clearly applicable to convergence acceleration of local iterative solvers, but
it does not provide any memory or calculation time improvements. An AMR (adaptive
mesh refinement) multigrid method was also presented by Sussmanet al. [36] to handle
two-phase flows with a level-set method. Even if the AMR technique limits the number
of calculation nodes and allows the flow resolution scales to change, this method is not
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local enough to meet the memory requirements described above. Strain [34] implemented a
semi-Lagrangian level-set method on a quadtree mesh. In his tree method the computational
effort is concentrated on the interface and the accuracy is comparable to that of a uniform
mesh method, while time and memory costs are lower. The results are very promising
for scalar velocity field problems. However, no coupling to a Navier–Stokes solution is
presented.

Building an algorithm that refines the grid near the interface is fundamental to any
improved method and has to be developed by means of a multigrid method, in order to
reduce the linear system size. This method must be able to change the scale of the so-
lution on only one or two cells if necessary. In this way, a three-dimensional calculation
algorithm can be obtained that is able to solve, for example, the “crownlike” instability
of a droplet splashing on a thin liquid film (Yarin and Weiss [51]), where the length-
scale ratio between the initial droplet diameter and the finger diameter can be as high
as 50.

In the present paper, a new local multigrid method is presented, which offers the possi-
bility of zooming onto one calculation node and obtaining a solution using a refined grid
around this node. The OCLM (one-cell local multigrid) technique is a general algorithm
independent of the discretization schemes and the Navier–Stokes solver. When the refine-
ment criterion is fulfilled on any one node, a small calculation domain (nine cells) is built
over this node. The solution for the multigrid domains is calculated by the same proce-
dure as that used on the original coarser grid. An original augmented Lagrangian method,
coupled to a BiCGSTAB solver, is investigated to numerically solve the motion equation
system, and a VOF-like algorithm, based on total variation diminishing (TVD) schemes, is
developed to handle the interface tracking procedure. The Navier–Strokes solver is chosen
for its robustness and the TVD method for its easy programming. A new type of composite
boundary conditions is developed to solve the flow at the cell scale. Finally, this robust and
flexible OCLM method can act as a zoom, able to solve the multiphase flow at different
space scales.

After a complete presentation of the solution to a multiphase flow using a coarse grid, the
OCLM method is described and validated with different scalar front tracking tests. Classical
two-phase flow problems such as nonlinear drop oscillations, Rayleigh–Taylor instabilities,
and drop impacts on liquid films are simulated in two dimensions. The capacity of this
method to accurately track surface deformation and stretching is demonstrated, as well as
its ability to save computer time and memory storage.

2. GOVERNING EQUATIONS AND RESOLUTION ALGORITHM FOR A SINGLE GRID

2.1. One-Fluid Model

A single set of two-dimensional and incompressible Navier–Stokes equations with vari-
able density and viscosity is solved over the entire domain. The conservation equations
are convolved with an indicator functionC, which is taken to be zero in one fluid and one
in the other fluid. Letu be the velocity field,g the gravity vector,p the pressure,σ the
surface tension,κ the curvature,µ the viscosity, andρ the density. If the sliding between
the phases is taken as being negligible, the velocity field can be assumed to be continuous
through the free surface. Without any phase changes the incompressible flow can then be
considered locally isovolume. In a uniform Cartesian coordinate system (x, y), associated
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with a bounded domainÄ, the one-fluid model can be expressed as

ρ = ρ0+ (ρ1− ρ0)C (1)

µ = µ0+ (µ1− µ0)C (2)

∇ · u = 0 (3)

∂u
∂t
+ (u · ∇)u = g− 1

ρ
∇p+ 1

ρ
∇ · [µ(∇u+∇Tu)] + 1

ρ
σκδi ni (4)

∂C

∂t
+ u ·∇C = 0, (5)

whereδi is a Dirac function indicating the interface,ni is the unit normal to the interface,
andρ0, ρ1, µ0, andµ1 are the respective densities and viscosities in each phase.

The dimensionless parameters characterizing the flow are the Atwood numberA = (ρ1−
ρ0)/(ρ1+ ρ0), the Reynolds number Re= ρLu/µ, and the Weber number We= ρLu2/σ .
L is a characteristic length scale of the flow andu is the intensity of the velocity.

The advection equation (5) of the phase functionC, or “colour function,” describes the
changes of the free surface and simultaneously characterises the evolution of the physical
characteristics of the fluids by means of (1) and (2). The interface between the fluids is
defined as the discontinuity ofC. In practical terms, it is the line defined byC equal to 0.5.
The two-phase flow is analysed in terms of an equivalent single fluid whose propertiesρ and
µ are related toρ0, ρ1, µ0, andµ1 of the original two phases by the colour functionC. The
model can be easily extended to flows dealing with more than two phases, by modifying
the phase functionC. The numerical solution of (1–5) requires special attention because of
(i) the hyperbolic character of Eq. (5) and (ii) the discontinuity of the density and viscosity
fields in Eq. (4).

2.2. Numerical Solution for a Single Grid

The quality of the interface tracking procedure is strongly dependent on the precision with
which the velocity field is calculated. In particular, the incompressibility condition must be
satisfied to a good approximation, even with high density or viscosity ratios. Appropriate
schemes must be developed to discretize the phase function equation (5) in such a way as to
retain the discontinuous character ofC. The algorithms used in this section were developed
and described by Vincent and Caltagirone [43] in a previous article.

2.2.1. Interface capturing method.The classical methods for solving the advection
equation of a discontinuous phase functionC are derived from reformulating the problem
with a smooth function, based on different criteria such as the volume fraction (VOF-like
methods [18, 52]) or the distance function (level-set methods [8], [9, 35]). It was decided
to directly compute Eq. (5) for the sake of simplicity. Classical schemes are not efficient
enough to treat the hyperbolic character of (5) and the advection of shocks [23, 17]. High-
order schemes, such as the Lax–Wendroff, Beam–Warming, or QUICK ones, create spurious
oscillations leading to nonphysical solutions, and first-order monotonic schemes are very
diffusive. High-resolution numerical methods exist to solve scalar hyperbolic equations
(Sweby [37] and LeVeque [23]). These methods must satisfy the property of total variation
diminishing. This implies that in the regular zones of the solution high-order resolution
is obtained, whereas near the discontinuities or the strong variations of the solution, the
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order of the method is decreased to ensure the TVD property leading to a monotonic
solution.

An explicit Lax–Wendroff TVD (LWT) time-stepping scheme is used for the advection
of the phase indicator functionC (Eq. (5)). The stability conditions for this scheme are

0 < Nx
CFL < 1,

(6)
0 < Ny

CFI < 1,

whereu = (ux, uy) is the velocity,Nx
CFL = ux

1t
1x , Ny

CFL = uy
1t
1y , and1t , 1x, and1y are

the time and grid steps. Withσx = 1t
1x andσy = 1t

1y , the Lax–Wendroff TVD superbee
scheme can be expressed as

Cn+1/2
i, j = Cn

i, j − σx max(0, ux)
(
Fn,+

i, j − Fn,+
i−1, j

)− σx min(0, ux)
(
Fn,−

i+1, j − Fn,−
i, j

)
,

Cn+1
i, j = Cn+1/2

i, j − σy max(0, uy)
(
Fn+1/2,+

i, j − Fn+1/2,+
i, j−1

)
(7)

− σy min(0, uy)
(
Fn+1/2,−

i, j+1 − Fn+1/2,−
i, j

)
,

where Fn,+
i, j = Cn

i, j − 1x
2 (uxσx − 1)γ n

i, j and Fn,−
i, j = Cn

i, j − 1x
2 (uxσx + 1)γ n

i, j for the
x-direction. In these numerical flux expressions,γ n

i, j = max(0,min(1, 2θn
i, j ),min(2, θn

i, j ))

(Cn
i+1, j − Cn

i, j )/1x. The ratio of slopes in the upwind direction isθn
i, j = (Cn

i, j − Cn
i−1, j )/

(Cn
i+1, j − Cn

i, j ). They-direction numerical fluxes are the same as the previous ones, butux

becomesuy,1y replaces1x, and the spatial direction subscripts are inverted.
Applying the LWT scheme for interface tracking problems (Vincent and Caltagirone

[43]) presents many advantages over classical methods: the computation is extremely easy
in two and three dimensions, the computational time is low (Rider and Kothe [31]) when
compared to that for efficient VOF methods or Marker techniques, the extension to multi-
phase problems (more than two fluids) is easy, and the mass conservation is checked with
a second-order convergence rate. In most of the cases tested, the results were shown to be
similar to those from classical interface-tracking methods. However, significant differences
were observed in strongly sheared problems where the free surface was strongly stretched
and local resolution only covered one or two cells. These cases are also difficult to resolve
by the classical methods because the VOF technique cuts the interface due to artificial
numerical surface tension, the Level–Set model induces a considerable loss of mass, and
the Marker method involves complex calculation times and computing. The LWT interface
capturing step (7) applied at time (n1t) is referred to as ICn in the rest of the paper.

2.2.2. Navier–Stokes solver.The Navier–Stokes equations are discretized by a finite-
volume method on a staggered mesh (MAC, Harlow and Welsh [16]). An augmented
Lagrangian procedure (Fortin and Glowinsky [11], Temam [38], Nicolaset al. [28]) is
investigated to solve the coupling between the pressure and the velocity in the equations of
motion (3–4). Assuming the flow to be artificially weakly compressible until∇ · u = 0 is
numerically satisfied and using the mass balance equationdρ/dt + ρ∇ · u = 0, a relation
linking the velocity field and the volume force exerted by the pressure can be expressed as

∂p

∂t
+ r∇ · u = 0, (8)

wherer is a positive constant.
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An implicit resolution algorithm is computed to numerically translate the strong coupling
betweenu andp. The augmented Lagrangian method consists of adding the termr∇ · u in
the Navier–Stokes equations. A first-order Euler scheme is used to discretize∂p/∂t so that
expression (8) can be rewritten as follows:

pn+1 = pn − r1t∇ · u. (9)

The implicit pressure term∇pn+1 in (4) can be rewritten as∇pn − r ′∇(∇ · u), using
expression (9). Herer ′ is a numerical parameter that is approximately equal to the ratio
between1t and the isothermal compressibility. In the problems studied the range ofr ′ was
100< r ′ < 10,000. Finally, the implicit equations of motion were computed to solve the
two-phase flow,

∂u
∂t
+ un · ∇un+1− r ′

ρ
∇(∇ · un+1)

= − 1

ρ
∇pn+ g− 1

ρ
∇ · [µ(∇un+1+∇Tun+1)]+ Fn+1

ST , (10)

whereFn+1
ST is a volume force due to surface tension and is described in the next section.

The augmented Lagrangian termr
′
ρ
∇(∇ · un+1) ensures an implicit reformulation of the

coupling between pressure and velocity; it suppresses the complex definition of boundary
conditions on the pressure, and above all it acts as a constraint in (10) to enforce the
divergence-free condition∇ · u = 0. In solving Eq. (10), the pressure is updated using the
explicit expression (9). The augmented Lagrangian approach (9)–(10) is a reformulation
of the motion equations (3)–(4) in terms of an optimisation problem in which a velocity–
pressure saddle point must be determined by an Uzawa algorithm [42]. The augmented
Lagrangian algorithm can be considered a variant of the artificial compressibility method
(Peyret and Taylor [29]), with a divergence term in the momentum equation that implicitly
accounts for the incompressibility constraint. This approach is simpler than a projection
method, where pressure boundary counditions can sometimes be difficult to impose (Peyret
and Taylor [29]). In contrast, Dirichlet and Neumann boundaries can easily be imposed in
the augmented Lagrangian Navier–Stokes solver.

Following the work of Angot [2] and Caltagironeet al. [5], volume and surface penalty
terms were introduced into the Navier–Stokes equations. In this way velocities were
implicitly imposed at the boundaries ofÄ and in the inner domain if needed. Then, Eq. (10)
reads

∂u
∂t + un · ∇un+1+ Bv

u(u
n+1− u∞)− r ′

ρ
∇(∇ · un+1)

= − 1
ρ
∇pn + g− 1

ρ
∇ · [µ(∇un+1+∇Tun+1)] + Fn+1

ST ,

∂un+1

∂n = Bs
u(u

n+1− u∞) · n on the boundary0 of the physical domain,

(11)

wheren is a normal to the boundaries ofÄ andu∞ is a reference velocity.Bv
u andBs

u

are diagonal matrices. Their componentsBv,l
u and Bs,l

u are respectively volume control
parameters which are used to imposeu∞ in a velocity control volume and surface control
parameters enforcing the boundary conditions on0. When Bv,l

u is set equal to infinity,
the implicit solution of expression (11) involvesun+1 = u∞. For 0< Bv,l

u < +∞, the
numerical solution corresponds to a hybrid value deduced from the equilibrium between
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the mechanical constraints and the reference velocity. The penalty term is inactive whenBv,l
u

is set equal to zero. Dirichlet boundary conditions are easily imposed by settingBs,l
u = +∞,

whereas Neumann boundary conditions are obtained by settingBs,l
u = 0. By analogy with

the theory of thermal exchanges, 0< Bs,l
u < +∞ is associated with Fourrier-like boundary

conditions.
To approximate the differential form of the equation of motion (10) a second-order Euler

scheme, or GEAR scheme, was used on the time derivatives while a third-order QUICK
scheme (Leonard [22]) was applied to the nonlinear convective term and a second-order
centred scheme was chosen to discretize the viscous and the augmented Lagrangian terms.
An iterative BiCGSTAB (Bi-Conjugate Gradient Stabilised) algorithm (Van Der Vorst [50])
was chosen to solve the linear system generated by the discretization of (10). In free surface
flow problems the spatial discontinuity of the characteristics through the interface induces
large off-diagonal terms in the linear system. Because of this, when the ratiosρ1/ρ0 or
µ1/µ0 assume values much larger than 1, efficient preconditioning is required to ensure
the convergence of the BiCGSTAB iterative method. The Modified Incomplete LU (MILU)
algorithm of Gustafsson [14] has been used in this study. Even with strongly discontinuous
characteristics at the free surface (ρ1/ρ0 > 104 orµ1/µ0 > 107), the Navier–Stokes solver
provides precise solution, with a divergence-free velocity field. Different solutions of the
Rayleigh–Taylor instability problem are presented in Fig. 1. For strong viscosity ratios,
a hybrid augmented Lagrangian/projection method can provide more accurate solutions

FIG. 1. Numerical simulation of a two-dimensional Rayleigh–Taylor instability on a 120× 240 grid. The
initial perturbation is 10% of the domain height. The viscosity is the same in the two fluids. The ratio between the
heavy and lighter fluid densitiesρ1/ρ0 is 2 (ρ0 = 500 kg·m−3 andρ1 = 1000 kg·m−3) and the Atwood number
is A = 0.33. The velocity field and the free surface (C = 0.5) are presented with We= +∞, 1000, and 100 in
(a), (b), and (c) respectively. As predicted by several studies (Elgowainy and Ashgriz [10]), the surface tension
stabilises the interface and limits the instability growth.
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(Vincent and Caltagirone [43]). In the following sections, the augmented Lagrangian solver
(9–10) at time(n1t) is referred to asALn.

2.2.3. Surface tension discretization.Following the CSF method of Brackbillet al.[4]
and Lafaurieet al.[20], we can write the surface tension as a volume force according to the
density,

C∗ = 1

2
ρi, j + 1

8
(ρi+1, j + ρi−1, j + ρi, j+1+ ρi, j−1),

(12)

FTS = −σ ρ
ρm

∇C∗

[ρ]
∇ ·
( ∇C∗

‖∇C∗‖
)
,

whereρm is the arithmetic average betweenρ0 andρ1, [ρ] is the density jump across the
free surface, and‖C∗‖ is theL2-norm ofC∗.

This formulation is very convenient because, on a fixed Cartesian grid, the two-phase
flow is only characterised by the colour function as a unique fluid with variable physical
characteristics and the free surface location is not tracked explicitly by such a method.
The volume surface tension method (12) avoids calculating the geometrical properties of
the interface such as the curvatureκ. The main drawback of the Continuum Surface Force
(CSF) method of Brackbillet al. [4] is the generation of spurious or parasite currents near
the free surface. When either viscosity or gravity dominates the dynamics, the surface
tension effects are negligible and the parasite currents are insignificant. However, in certain
situations, such as bubble instabilities, the capillary effects are dominant and the spurious
currents generated can destroy the numerical solution in near-equilibrium configurations.
The discretization of the surface tension (12) can be directly applied to the phase functionC.
However, to limit the production of parasite currents near the interface (Lafaurieet al.[20]),
a smoothed functionC∗ is used instead ofC in expression (12). The local character of the
method is extended over four or five cells near the free surface by repeating the smoothing
operation four times.

Contrary to Brackbillet al.[4], who use finite differences to discretize the surface tension
force on a MAC grid, Vincentet al. [44] use a mixed finite differences/finite volumes
discretization to obtain an approximate expression of (12). Working on a velocity control
volumeVc, they consider−σ ∇C∗

[C∗] to be constant onVc whereas the divergence term∇ ·
( ∇C∗
‖∇C∗‖ ) is integrated on the surface ofVc using the divergence theorem of Green and

Ostrogradsky. In summary, for thex-component, the discretization ofFST is expressed as
follows:

κ = −∇ · ∇C

‖∇C‖ = −∇ · ni =
Nxright

1xi

√
Nx2

right
+ Ny2

right

− Nxleft

1xi

√
Nx2

left
+ Ny2

left

+ Nyup

1yj

√
Nx2

up
+ Ny2

up

− Nydown

1yj

√
Nx2

down
+ Ny2

down

, (13)

FST = − σ

[ρ]

ρi−1/2, j

ρm

(C∗i, j − C∗i−1, j )

1xi
κi, j .

The two components (Nx, Ny) of the normal to the free surface are expressed on the right,
left, up, and down interfaces of each discretization control volume. On the control volume
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(i, j ), they are defined as

Nxright =
C∗i+1, j − C∗i, j

21xi+1
+ C∗i, j − C∗i−1, j

21xi
,

Nxup =
C∗i, j+1− C∗i−1, j+1

21xi
+ C∗i, j − C∗i−1, j

21xi
,

Nxleft =
C∗i, j − C∗i−1, j

21xi
+ C∗i−1, j − C∗i−2, j

21xi−1
,

Nxdown =
C∗i, j − C∗i−1, j

21xi
+ C∗i, j−1− C∗i−1, j−1

21xi
,

(14)

Nyright =
C∗i, j+1− C∗i, j

21yj+1
+ C∗i, j − C∗i, j−1

21yj
,

Nyup =
C∗i, j+1− C∗i, j

21yj+1
+ C∗i−1, j+1− C∗i−1, j

21yj+1
,

Nyleft =
C∗i−1, j+1− C∗i−1, j

21yj+1
+ C∗i−1, j − C∗i−1, j−1

21yj
,

Nydown =
C∗i, j − C∗i, j−1

21yj
+ C∗i−1, j − C∗i−1, j−1

21yj
.

According to the second component ofu, the expression of the surface tension force (12) is
directly obtained by a linear combination of the subscripts in Eqs. (13) and (14). This for-
mulation was successfully used on several three-dimensional low Weber number problems
such as the liquid droplet impact on a liquid or a solid substrate (Vincentet al. [45]). The
influence of the surface tension on Rayleigh–Taylor instability is presented in Fig. 1 as an
example of a two-phase flow simulation.

3. ONE CELL LOCAL MULTIGRID METHOD

3.1. OCLM: Local Mesh Refinement Algorithm on One Cell

The One Cell Local Multigrid (OCLM) method is constructed with the Navier–Stokes
solver and the interface-tracking algorithm ALn − ITn. However, it can be used to solve any
equation with any solver [46–48]. A natural way to improve the accuracy of free surface
problem simulations, while also limiting the computational time and memory costs, is to
refine the grid near the interface. Nonuniform meshes can produce inaccurate solutions
or generate large algebraic systems. Using the local character of multigrid methods, we
have developed an adaptative local mesh refinement algorithm. At each grid levell (l =
0, 1, . . . , lmax), smax subgridsGl ,s(s= 0, 1, . . . , smax) are generated with mesh spacinghl .
The coarsest grid isG0. It initially contains all the necessary information and represents
the whole calculating domain. As illustrated in Fig. 2, a fundamental property of the local
mesh refinement is the following:

∀s,Gl ,s ⊂ Gl−1. (15)

In previous studies of Berger and Collela [3], Caltagironeet al. [5], Khadraet al. [19], or
Angot et al. [1] on local mesh refinement methods, rectangular parcels containing many
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FIG. 2. Example of local mesh refinement with the OCLM method.

coarse grid points were refined. In contrast, in the OCLM method, local refinement occurs in
a control volume around a single coarse grid point verifying a refinement criterion described
below (see Fig. 2). This technique minimizes the number of refined points and the memory
cost. Moreover, as explained by Berger and Collela [3], the use of rectangular grids is very
convenient because the calculations can be carried out with an identical solver at each of
the different grid levels.

A criterion related to the distance of a point from the free surface is used to build the
multigrid architecture:

Crphys=‖∇C‖. (16)

If Crphys= 0 on each side of coarse cellV0,s
c centred at a pressure node, no refinement is

carried out in this cell. If Crphys> 0 on one or more sides, the free surface crosses the cell
and a 9-point refinement, illustrated in Fig. 2, is performed in this cell. The coarse gridG0 is
scanned and a set of 3× 3 subgridsG1,s is built with a grid steph1 = h0/3. An odd cutting
of the coarser cells in each space direction, 3× 3 for example, is essential because it allows
a natural connection between the subgrids, as shown in Fig. 2. Thanks to the perfect joining
of the refinement cells and the explicit character of the LWT algorithm, the evolutions of the
free surface can be described at each of the different multigrid levels maintaining the stability
and the precision of the interface capturing method. A local refinement procedure is then
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performed on eachG1,s subgrid in the same manner as onG0. The subgrids are thus refined
recursively until the grid step becomes approximately equal to the smallest lengthscale of
the problem considered, corresponding to a “precision criterion”Cp. Initially, the whole
multigrid structure is built according to the interface position onG0 and the exact position
of C is imposed at each multigrid level. By knowing the distribution ofC on Gl ,s and by
calculating the velocity field on this grid, the interface tracking algorithm can be directly
applied on the 3× 3 fine gridsGl ,s to obtain the new distribution of the phase function
C. This procedure is possible thanks to the explicit character of the LWT algorithm. As
the dynamics and the geometry of the interface change, the multigrid solver can track the
interface in time and space by refining the grid on several levels when either the physical
criterion Crphys or the precision criterionCp have been verified at coarse points. With this
step undertaken, the phase functionC is initialised on the subgridl by projecting the finer
values ofC onto eachGl ,s.

Because of the incompressibility condition, the fine grids need to be coupled with the
coarse grids to achieve the implicit solving of the motion equation. The Navier–Stokes
equation system is first solved onG0. Next, p andu are initialised on eachG1,s by means
of a classic Q1 interpolation operator (see Appendix A). Composite boundary conditions,
described in Section 3.2, are used on the boundaries ofG1,s to ensure the conservation of
the mass and momentum fluxes. The Navier–Stokes equations are then solved on theG1,s

subgrids. This procedure is repeated on all of the multigrid levels.
The solution from a fine grid solution can be transferred back to the previous coarse grid

(Gl to Gl−1) using a direct injection procedure,

∀(x, y) ∈ Gl ∩ Gl−1, φl−1(x, y) = φl (x, y), (17)

whereφ represents an unknown variable of the problem such asC, p, or one of the
components ofu. This reverse procedure is referred to as a restriction step. In this way
the problem can be solved again onG0 to take into account the corrections brought about
by the restriction step on the whole coarse grid solution.

Another procedure, which has been used in this article, is the full weighting interface
control volume restriction FWICV (Hackbush [15], Laugieret al. [21]). It consists of
estimating the phase function distribution on a volumeVl−1,s

c as the sum ofC on theGl ,s′

subgrids,

Cl−1,s(x, y) = 1

S
(
Vl−1,s

c
) ∑

s′∈Rl−1,s
l

∫
Vl ,s′

c

C(x, y) dv, (18)

where Rl−1,s
l = {s′/Vl−1,s

c ∩ Vl ,s′
c 6= ∅} is the restriction space betweenGl and Gl−1,

Cl−1,s(x, y) is the projection of the phase function on a calculation domainVl−1,s
c , and

S(Vl−1,s
c ) is the surface of a control volume ofGl−1. Thanks to (18), the fluid rearrange-

ment is conservative at each multigrid level and the resulting dynamics on the coarser grids
are coupled to the dynamics on the finer ones.

3.2. Composite Boundary Conditions (CBC)

The computation of the discrete Navier–Stokes problem (11) relative to each fine grid
Gl ,s requires the definition of boundary conditions which are compatible with the solution
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FIG. 3. Discrete unknown variables in a control volumeVl ,s
c located at a boundary ofGl ,s.

on Gl−1. The 3× 3 fine discrete domains are extended to a 5× 5 mesh to deal with the
boundary conditions, as shown in Fig. 3. A classical technique applied in several multi-
grid methods (FIC [1], FAS [39], or AMR [36]) consists of imposing nonhomogeneous
Dirichlet boundary conditions derived from the coarse grid solution (ul−1, pl−1),

ul ,s · n =
{

ul−1,prol
x if n = nx,

ul−1,prol
y if n = ny,

(19)

wheren is the unit normal to a boundary0l ,s of Gl ,s, nx is a unit normal in thex-direction,
andny is a unit normal in they-direction. The velocitiesul−1,prol

x andul−1,prol
y are respectively

the interpolated values oful−1
x andul−1

y . In the OCLM method Dirichlet boundary conditions
(Bs,l

u = +∞) were imposed using a Q1 interpolation procedure. However, the small size
of the 5× 5 subgrids leads to incorrect solutions if this method is used. In particular, the
interpolation operator does not preserve the divergence-free property (see Appendix B).

Choosing values of surface control parameters varying from 0 to+∞ and coupling these
values with volume control parameters of the same order, one notices that for average values
of Bs,l

u and Bv,l
u (from 102 to 106), the numerical solution is not restricted to adopting a

direction normal to0l ,s and therefore is greatly improved. In this way, to relax the constraints
at the boundaries of eachGl ,s, the numerical idea is to introduce a new type of boundary
conditions, called composite boundary conditions (CBC), into the Navier–Stokes equation
system. The CBC couple in the discrete motion equation system (11) Fourier-like conditions
in the direction normal to the boundary0l ,s of Gl ,s with hybrid volume conditions on the
velocity component which is tangential to0l ,s. The principle of the CBC is to be able to
impose each component of the velocity on the boundaries in a coupled way. The CBC
suggest the direction of the flow at the boundaries of the calculation domain. This contrasts
with the classical boundary conditions that impose either the flux (Neumann condition) or
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one component of the velocity (Dirichlet condition), which are scalar components of the
flow.

On the fine gridsGl ,s, solving the discrete Navier–Stokes equations (11) with the CBC
requires the definition of control parametersBv,l

u andBs,l
u as well as reference velocitiesul

∞
associated with them. Each component ofu∞ on Gl is defined as the average interpolation
of the coarse grid values to maintain the coupling between the multigrid levels. The control
parameters are estimated by relating the concept of vectorial boundary conditions to the
physics included in the Navier–Stokes model, by means of the rate of deformation tensor
D and the viscous stress tensor

τ =
(
τx,x τx,y

τy,x τy,y

)
.

They are defined as follows:

D = 1

2
[∇u+∇Tu],

(20)
τ = 2µD.

If we assume that the symmetrical components of the viscous stress tensor are preserved
between two multigrid levels, we can estimateBv,l

u andBs,l
u on the boundaries of eachGl ,s.

The finite volume approximation of∇ · τ is developed on a fine control volumeVl ,s
c around

point (3i, 3 j ) (see Fig. 3). The normal contributionTx3i,3 j of the viscous stress tensor in
the Navier–Stokes equations is expressed on side(3i − 1

2, 3 j ) of Vl ,s
c , for the first velocity

component:

Tx3i,3 j =
∫

Vl ,s
c

∇ · τ dv =
∫
0l ,s

τx,x · n dγ =
[
−µ∂ux

∂x

]3i+1/2,3 j

3i−1/2,3 j

. (21)

From the coarse grid, the interpolation operator leads to
ul

x3i+1,3 j
= 1

3ul
xi+1, j
+ 2

3ul
xi, j
,

ul
x3i,3 j
= ul

xi, j
,

ul
x3i−1,3 j

= 2
3ul

xi, j
+ 1

3ul
xi−1, j

.

(22)

In a discrete form, the following is obtained:

Tx3i,3 j =−µ
[

ul
x3i+1,3 j

− 2ul
x3i,3 j
+ ul

x3i−1,3 j

hl

]
= −µ

[
1
3ul−1

xi+1, j
− 2

3ul−1
xi, j
+ 1

3ul−1
xi−1, j

hl

]

=−µ
[

1
3ul−1

xi+1, j
− 1

3ul−1
xi, j
− ul

x3i−1,3 j
+ ul

x3i−2,3 j

3hl

]
=−µ

[
1
9ul−1

xi+1, j
− 2

9ul−1
xi−1, j
− 1

3ul
x3i−1,3 j

hl

]
.

(23)

In Eq. (23), the velocityul
x3i−1,3 j

, corresponding to side (3i − 1
2, 3 j ) of Vl ,s

c , is exterior to
Gl ,s (Fig. 3). To determine this velocity, the viscous stress is modelled as a flux between the
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fine grid and the outside region. As was explained in Section 2.2.2, this method consists of
estimating a flux based on a Fourier-like control parameter and a reference velocity,

−µ∂ux

∂x
= Bs,∗

u (ux − ux,∞),
(24)

−∂ux

∂x
= Bs,1

u (ux − ux,∞),

whereBs,∗
u and Bs,1

u are control parameters andBs,1
u = Bs,∗

u /µ. On side (3i − 1
2, 3 j ), the

discrete expression of (24) is given by

−
(ul

x3i,3 j
− ul

x3i−1,3 j

hl

)
= Bs,1

u

(
ul

x3i+1/2,3 j
− ux,∞

) = Bs,1
u

(ul
x3i,3 j
+ ul

x3i−1,3 j

2
− ux,∞

)
. (25)

Estimating the reference velocityux,∞ according to coarse values

ul
x3i−1,3 j

= 5

6
ul−1

xi, j
+ 1

6
ul−1

xi−1, j
, (26)

using Eq. (25), and interpolatingul by the Q1 operator leads to an approximation of the
outside velocityul

x3i−1,3 j
according to the coarse velocity fieldul−1:

ul
x3i−1,3 j

(
Bs,1

u

2
− 1

hl

)
= ul−1

xi, j

(
2Bs,1

u

6
− 1

hl

)
+ ul−1

xi−1, j

(
Bs,1

u

6

)
. (27)

Combining Eqs. (23) and (27), we obtain an explicit expression binding the surface control
parameterBs,1

u on the fine grid andul−1:

Tx3i,3 j

= −µ
[

1
9ul−1

xi−1, j
+ 2

9ul−1
xi−1, j
− 1

3

(
2Bs,1

u hl − 6/3Bs,1
u hl − 6

)
ul−1

xi, j
− 1

3

(
Bs,1

u hl

/[
3Bs,1

u hl − 6
])

ul−1
xi−1, j

hl

]

= −µ
[ 1

3ul−1
xi+1, j
− 2

3ul−1
xi, j
+ 1

3ul−1
xi−1, j

hl

]
. (28)

By identifying the velocities in expression (28), the following is obtained:

Bs,1
u =

1

hl

(
3ul−1

xi, j
− 2ul−1

xi+1, j
− ul−1

xi−1, j

)(
2ul−1

xi, j
− ul−1

xi+1, j
− ul−1

xi−1, j

) = 1

hl

(
3− 2ul−1

xi+1, j

/
ul−1

xi, j
− ul−1

xi−1, j

/
ul−1

xi, j

)(
2− ul−1

xi+1, j

/
ul−1

xi, j
− ul−1

xi−1, j

/
ul−1

xi, j

) ,
(29)

Bs,1
u 6=

2

hl
.

Assumingul−1
xi+1, j

, ul−1
xi, j

, andul−1
xi−1, j

to be of the same order,


0.5≤ ul−1

xi+1, j

ul−1
xi, j

≤ 1.5,

0.5≤ ul−1
xi−1, j

ul−1
xi, j

≤ 1.5,

(30)
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the surface control parameter is estimated to be

Bs,1
u ≈

3

2hl
. (31)

The demonstration developed in expressions (21)–(31) can be carried out forτx,x or τy,y on
any fine control volume on the boundaries ofGl ,s, with identical conclusions.

To couple the velocity components in the Navier–Stokes solution a volume control pa-
rameterBv,2

u must be defined in the tangent direction to the boundary ofVl ,s
c . According

to the second component of the velocity, a Fourier-like flux condition gives rises to the
following expression:

−µ∂uy

∂y
= Bs,2

u (uy − uy,∞). (32)

In a dimensionless form, this reduces to

−µu0

L ′
∂uy

∂y
= Bs,2

u u0(uy − uy,∞), (33)

whereL ′ is a characteristic length,uo is a reference velocity, andBs,2
u ≈ 3/2hl .

The symmetrical componentτy,y of the viscous stress tensor has to be corrected in the
momentum equations (4) with a control volume parameterBv,2

u to check its compatibility
with (33). In the Navier–Stokes equations, the second symmetrical component of the viscous
stress tensor is related toBv,2

u as follows:

−µ∂
2uy

∂y2
= Bv,2

u (uy − uy,∞). (34)

The dimensionless form of expression (34) is

−µu0

L2

∂2uy

∂y2
= Bv,2

u u0(uy − uy,∞). (35)

Identifying the fluxes in (33) and (35), we relate the volume and surface control parameters
by

Bv,2
u =

L ′Bs,2
u

L2
. (36)

In order to be consistent with the metrics on the solving gridGl ,s, the characteristic lengthL
is chosen to be equal to the widthhl−1 of Gl ,s. The centred discretisation of∂uy/∂y induces
L ′ = 2L. To summarise, assuming the conservation of symmetrical components of the
viscous stress tensor between two multigrid levels, surface and volume control parameters
can be estimated independent of the solution as follows:

Bs,l
u ≈

3

2hl
,

(37)

Bv,l
u ≈

2Bs,l
u

hl−1
.
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In the present approach, thanks to scalar control parameters (37) acting in all the space
directions, vectorial characteristics of the flow are imposed on the boundaries of the fine
calculation domainsGl ,s. In the following sections, the validity of the CBC and their
superiority over the classical Dirichlet or Neumann conditions will be demonstrated.

3.3. Convergence Checks on the Self-Similar Vortex Problem

The self-similar vortex problem consists of adding a source termS(x, y) = (Sx(x, y),
Sy(x, y)) into the Navier–Stokes equations:

Sx(x, y) = −
(
π2µ

2

)
cos

(
πx

2

)
sin

(
πy

2

)
,

(38)

Sy(x, y) =
(
π2µ

2

)
sin

(
πx

2

)
cos

(
πy

2

)
.

The velocity field is initially zero and evolves toward a vortex due to the addition of the
source term (38). An analytical solution is obtained for the set of equations (3), (4), and
(38):

ux(x, y, t) = −cos

(
π

2
x

)
sin

(
π

2
y

)[
1− e−π

2µt/2ρ
]
,

uy(x, y, z) = −sin

(
π

2
x

)
cos

(
π

2
y

)[
1− e−π

2µt/2ρ
]
, (39)

p(x, y, z) = −ρ
2

[
cos

(
π

2
x

)
+ cos

(
π

2
y

)][
1− 2e−π

2µt/2ρ + e−π
2µt/ρ

]
.

Assuming the calculation domain to be a 1-m square box, the self-similar vortex problem
has been restated by introducing an artificial interface, defined by the following rectangular
colour function distribution:

C(x, y) =
{

1 if 0.275≤ x ≤ 0.725 and 0.375≤ y ≤ 0.625,

0 else.
(40)

Expression (40) is used to evaluate the OCLM method on an interface tracking test, by
refining the grid in the regions where∇C 6= 0. On one side, the colour (40) is advected with
the exact velocity field. On the other side, the Navier–Stokes equations and the interface
tracking are solved using the local mesh refinement. Comparisons are presented on the
velocity field and the interface position. The exact position of the phase function shape is
deduced from a Lagrangian advection of particles, placed on the interface.

The absolute errorEV is theL∞ norm of the difference between the calculated and exact
velocity field. Figure 4 shows howEV changes with the number of calculation pointsN on
the coarsest grid. The calculations illustrate second-order convergence of the solver on the
coarse grid, whereas convergence rates of 1.5 and 1.8 are found respectively onG1 andG2.
These were computed at each grid level with a fixed value of the surface control parameter
Bs,l

u equal to 3/2hl . The differences in the convergence rates can be explained by the very
local character of the method, whose convergence is only conditioned by the interpolation
of solutions from coarse grids. However, the behaviour of the multiscale OCLM solver is
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FIG. 4. Behaviour of the absolute errorEV on the velocity for several coarse grids: 82, 202, 402, 802, and
1202.

satisfying. By starting on a coarse grid, it is able to refine the flow resolution at the cell scale
maintaining a convergence rate of up to 1.5. In the present problem, in spite of the interface
tracking, the dynamic generation and removal of fine cells does not affect the quality of
the solver. Moreover, thanks to composite boundary conditions (CBC), the divergence-free
property is fulfilled with a 10−13 computer error at all grid levels and the solution converges
to the analytical solution.

To verify the effects of the boundary conditions on the multigrid solution, additional
tests were carried out on the single-phase vortex flow problem. First, the behaviour ofEV

was examined while the control parameters were modified. ParameterBND was defined
as the ratio between the surface control parameterBcomp used in the computation and the
theoretical oneBs,l

u . According to expression (37), it is estimated by

BND = 2Bcomphl

3
. (41)

An example considered was the solution of the self-similar vortex on two multigrid levels
with a 40× 40 coarse grid. Figure 5 shows that the maximum error corresponds to Dirichlet
(BND = +∞) and Neumann boundary conditions(BND = 0). The OCLM method reaches
its best performance whenBND is more or less equal to 1, which confirms the theoretical
results developed in the previous section.

The level of accuracy of the OCLM method is measured by comparing the evolution of
the volume repaired by the phase function while the grid is being refined. LetES be the
difference between the initial volume and the volume provided by the numerical solution.
The convergence of the OCLM method to the theoretical volume is illustrated in Fig. 6. A
second-order convergence in space is reached on all the multigrid levels. The local mesh
refinement ensures better volume conservation from a coarse grid to a finer one. At the
same time, the geometrical description of the interface is improved. Starting with a 20× 20
coarse grid and carrying out the calculations on two multigrid levels (Fig. 7), one can reach
a very accurate solution, being almost equal to the analytical one.
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FIG. 5. Behaviour of the absolute errorEV on the velocity for several values of the surface control ratioBND.
The simulation starts on a 40× 40 coarse grid.

The number of time steps is defined to beNt and the number of calculation points at a
grid level asNCP. Figure 8 shows that the multigrid solution presented in Fig. 7e is 80%
less expensive in computational nodes and thus also in memory, compared to the equivalent
single-grid solution.

3.4. Validation of the OCLM Method on Two-Dimensional
Scalar Interface Advection Tests

This section examines the OCLM method using several advection tests where no Navier–
Stokes solution is required. When the velocity field is defined analytically, the difficulty

FIG. 6. Convergence study on the volume conservation.ES is presented for several coarse grids: 82, 202,

402, 802, and 1202.



190 VINCENT AND CALTAGIRONE

FIG. 7. Multigrid simulation of the self-similar vortex problem.G0 is a 20× 20 grid. A three-level solution
is presented after large deformations have been induced fort = 0.2 s. (a), (c), and (e) solutions respectively
on G0,G1, andG2; (b) diffusion of the multigrid solution onG2 (contours 0.01, 0.5, and 0.99 are presented);
(d) local mesh refinement structure at the final calculation step; and (f) analytical solution.

of the motion equation resolution is avoided and the intrinsic improvements on the inter-
face tracking, provided by the local multigrid treatment, can be highlighted. Two different
scalar velocity fields were considered: Zalezak’s problem and the vortex flow problem. The
domain lengthL of the square calculation domain is 1 m. In the first test,u is defined
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FIG. 8. Number of calculation points at each multigrid level. A 20× 20 coarse grid and two multigrid levels
are considered.

as

ux = −π
2

(
y− L

2

)
,

(42)

uy = π

2

(
x − L

2

)
,

whereas in the second one, the velocity field is chosen to be as in the paper of Rider and
Kothe [31],

ux = cos(4πx) cos(4πy),
(43)

uy = sin(4πx) sin(4πy).

The velocity field on the fine grids is deduced from the calculation of the divergence-free
solutions (42) and (43) at each fine grid levelGl .

3.4.1. Zalezak’s test.A constant turning velocity field advects a slotted circle of a radius
of 0.2 m, centred in a l-m-long square calculation domain. With a 30× 30 coarse gridG0 it
is clear that the resolution provided byG0 is too weak to ensure that the problem is precisely
solved. Indeed, the circle definition is very approximate, in particular near the sharp corners.
At these points, the interface-tracking algorithm requires at least two definition cells to work
effectively, unless some diffusion is generated by the TVD scheme. The OCLM method was
carried out on two multigrid levels (Fig. 9) to remedy the previous numerical drawbacks.
The refinement levels were defined from the beginning of the calculation using criterion (16)
and the exact phase repartition was initially enforced onG1 andG2, as illustrated in Fig. 9a.
The differences among the three phase distributions are quite marked att = 0. The first
advantage of the OCLM method is that it takes the initial distribution ofC more effectively
into account. After one turn of the slotted circle, the interface returns to its initial position.
The numerical solution provided by the coarse grid is far removed from the analytical one
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FIG. 9. Multigrid simulation of Zalezak’s problem.G0 is a 30× 30 grid. Presentation of a three-level solution.
(a) Initial conditions on the different subgrids and velocity field onG0. (b) Local mesh refinement on the three
grid levels after one turn of the slotted circle. (c) Interface position (C = 0.5) on each grid level after one turn.
(d) Zoom on a sharp corner; visualisation of the OCLM solution onG2 and of the equivalent single-grid solution
on a 270× 270 grid.

(Fig. 9c). However, the multigrid solutions onG1 andG2 are satisfying. They converge to
the exact solution of the problem. If the fine grid solution at level 2 is closely examined,
the difference between this solution and the equivalent solution, deduced from a single
270× 270 grid calculation, is less than half a fine mesh (Fig. 9d). The local character of
the OCLM method is demonstrated in Fig. 9b).

A geometrical improvement ratioRGI is defined as the ratio of the number of calculation
pointsNlmax

CP on the multigrid levelsG0 throughGlmax to the number of computation nodes
NSG

CP of an equivalent complete single-grid solution. In the present test (Fig. 10a), the
averageRGI is equal to 0.28. The best improvement would correspond toRGI being equal
to 0, whereasRGI greater than or equal to 1 would represent an increase in the number of
computational nodes to be solved. The ratio of the multigrid memory cost Mm to that of
the single grid Ms is less than 1 in all the multigrid simulations computed. This represents
a significant gain which can be fully exploited in real two-phase flow simulations. Owing
to the explicit character of interface tracking and the low time cost of the ITn algorithm,
the multigrid solution proves more expensive in time. As described in Fig. 10b, the ratio of
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FIG. 10. Comparisons between the multigrid and the single-grid computations of Zalezak’s problem.
(a) Evolution of the number of calculation pointsNCP corresponding to a three-grid-level solution. (b) Normalised
calculation time and memory costs for several multigrid simulations.

the multigrid computational time Tm to the single grid one Ts is greater than 1 in all the
Zalezak’s problems solved.

3.4.2. The vortex test.By the same calculation domain as in the previous test, a con-
centration circle having a radius of 0.15 m, initially centred at the point (0.5, 0.75), was
strongly stretched in a complex symmetrical vortex velocity field defined in (43). Outlet
boundary conditions were computed onG0. An almost complete analytical solution of the
vortex problem has been calculated by Rider and Kothe [31] using a Marker method with
a great number of particles. They demonstrated that the best-performing interface tracking
algorithms, such as the level-set technique or the PLIC VOF methods, can only accurately
reproduce the larger space scales of the solution. Artificial numerical surface tension makes
the VOF method tear the fine scales of the interface, whereas in the level-set technique, the
mass loss is very high and the numerical diffusion involves the splitting of the fine-scale fea-
tures. In the same way a TVD-like method is shown to be poor in representing the fine parts
of the interface. On a reasonable single grid, Rider and Kothe explain that only a powerful
particle method can deal with strong stretching problems. However, a precise solution is
expensive for a scalar test in two dimensions and becomes unrealistic to implement in three
dimensions, where the number of particles is very high and the interpolation procedures
difficult to carry out.

The OCLM method, thanks to its local and multiscale character, can improve the handling
of strongly sheared interfaces. A three-level multigrid solution is presented in Fig. 11. Here
G0 is chosen to be a 70× 70 grid. The initial condition and the velocity field onG0 are
presented in Fig. 11a. As shown in Fig. 11b, the resolution provided by the coarse grid
is insufficient to accurately solve the problem presented in [31]. In contrast, the multigrid
solution onG1 andG2 (see Figs. 11d and 11f) successively captures all the features described
by the analytical solution of Rider and Kothe. The first multigrid level,G1, makes the
solution more precise in its upper part, but the lower part of the solution is not captured.
One additional refinement level,G2, supplements the numerical solution where very fine
structures are captured in its lower part. A comparison between the multigrid solution
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FIG. 11. Multigrid simulation of the vortex problem.G0 is a 70× 70 grid. A three-level solution is presented
after large deformations have been induced. (a) Initial conditions on the different subgrids and velocity field onG0.
(b) Interface position (C = 0.5) onG0 after deformation. (c) Local mesh refinement for the final time step (only
40% of the total cells are presented for convenience). (d) Interface position (C = 0.5) on G1 after deformation.
(e) Single-grid solution on a 630× 630 grid. (f) Interface position (C = 0.5) onG2.
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(Fig. 11f) and the equivalent solution on a single 630× 630 grid (Fig. 11e) shows almost
identical results. The difference between the single-grid and multigrid interface positions is
defined asES,M. It is written as a function of linear interpolations of free surface positions
on each grid segment which is cut by the interface:

ES,M = maxi, j
(∣∣P0

x,i, j − Plmax
x,3lmaxi,3lmax j

∣∣+ ∣∣P0
y,i, j − Plmax

y,3lmaxi,3lmaxj

∣∣), ∀lmax> 0

= ∥∥P0
x,i, j − Plmax

x,3lmaxi,3lmax j

∥∥
∞ +

∥∥P0
y,i, j − Plmax

y,3lmaxi,3lmax j

∥∥
∞, (44)

where P0
x,i, j is the linear interpolation of the interface position on the segment(i, j ) of

the single grid in thex-direction. The superscriptlmax refers to the finest grid level in the
multigrid architecture, whereas the subscriptsx andy refer to the segments slanted in the
x- andy-directions.

Figure 12c shows the variations ofES,M according to the number of multigrid levels. The
coarse grid and the calculation time are the same for all the solutions in this figure.ES,M

FIG. 12. Comparisons between the multigrid and the single-grid computations of the vortex flow problem
presented in Fig. 8. (a) Evolution of the number of calculation pointsNCP corresponding to a three-grid-level
solution. (b) Normalised calculation time and memory costs for several multigrid simulations. (c) Local difference
on interface position for several multigrid simulations. (d) Behaviour of the volume conservationES according to
the nondimensional space scaleh1/h0, with G0 being a 70× 70 grid.
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is high onG0 andG1, owing to the poor precision provided by the corresponding grids.
However, since the grid level is sufficient, the maximum local difference is very small and
the OCLM solution is comparable to the reference computation. The maximum difference
between interface positions in single and multigrid solutions is less than half a cell. Beyond
a certain number of multigrid levels, weak improvements inES,M are obtained owing to the
projection step between a coarse and a fine grid level. A higher order projection algorithm
must be tested for comparison. However, it would imply a larger discretization stencil and
a loss of the local character of the refinement technique.

The convergence of the OCLM method with respect to volume conservation is plotted
in Fig. 12d. A second-order convergence rate was obtained whereES was decreased from
5% onG0 to approximately 0.06% onG2.

As observed in the previous test and in Fig. 12a, where the averageRGI is 0.24, the
maximum number of calculation points required in the multigrid solution is four times less
than in the equivalent single-grid simulation. However, the memory and the calculation
time can be higher with a multigrid calculus than with a single-grid calculus, because of the
cost of the local refinement algorithm (interpolation procedures and refinement criterion
estimation) in relation to the explicit solution of a scalar problem onG0.

4. EXAMPLE OF NUMERICAL SIMULATION ON CLASSICAL TWO-PHASE FLOWS

In the following sections, the Navier–Stokes equations (1–5) are solved using the OCLM
method. Composite boundary conditions were computed for each problem. According to
expressions (37), the surface control parametersBs,l

u were chosen equal to 3/2hl . Moreover,
the convergence of the motion equation solver were controlled by a divergence threshold
εNS, as follows:

∑
s=1,smax

∫
Vl ,s

c

|∇ · u| dv < εNS. (45)

At each grid levelGl , the BiCGSTAB solver iterates until (45) is verified. To satisfy the
mass balance with the weakest numerical error,εNS = 10−13 was chosen.

The gradient of the phase functionC was estimated on each side of the pressure control
volumes to detect the volumesVl ,s

c requiring refining. Then, in keeping with expression (16),
a cell was refined if Crphys 6= 0. However, this property needs to be numerically verified. A
nearly zero interface detection threshold calledεI was defined, so that

Crphys> εI . (46)

In this way, a local mesh refinement procedure was implemented on each control volume
Vl ,s

c where (46) was verified.
A conservative procedure of phase function restriction (18) was implemented in all the

simulations of two-phase flows presented in this section. In addition an incomplete LU
preconditioner ILUD (Chapmanet al. [7]), which was more powerful than a MILU one
but very expensive in calculation time since the grid size increases, was used to solve the
reduced linear systems of the multigrid levelsGl , 0< l < lmax. The MILU preconditioning
is efficient on the coarse grid with suitable time costs. However, its efficiency is insufficient
on the 5× 5 multigrid calculation domains which are forced by the CBC at the boundaries.
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FIG. 13. Multigrid simulation of the oscillation of an initially square drop in zero gravity. The calculation
starts with a 30× 30 coarse gridG0 and two local refinement levels. The interface is shown onG2 at times 0.0,
0.05, 0.1, 0.2, and 1 s from left to right. The amplitude of oscillation is decreasing with time under the action of
viscosity in such a way that the drop approaches a spherical equilibrium shape.

4.1. Nonlinear Oscillation of a Two-Dimensional Drop

The deformation of a rod, or two-dimensional (2D) drop, induced by unbalanced surface
tension forces was then computed. In a zero-gravity field, the surface of the 2D drop is
perturbed and the free surface oscillates around its circular equilibrium shape. For our
first test, the dynamics of an initially square drop withρ1/ρ0 = 797.88, µ1/µ0 = 102, and
σ = 0.02361 N·m−1 was studied. Two- and three-grid-level simulations were investigated.
In Fig. 13, the drop shape on each grid level fort = 0.0, t = 0.05, t = 0.1, t = 0.2, and
t = 1.0 is displayed. A 30× 30 coarse grid was chosen in this case withh0 = 2.5 mm.
The results correspond closely to Brackbill’s [4]. The drop oscillates with a period of
approximately 0.4 s. With time, the oscillations become softened by viscous dissipation
and the drop shape tends to become circular. The small space scale onG2 allows a thin
description of the interface in the sharp corner zones to be reached.

The second simulation presented in this section is of the oscillation of a cylindrical drop
with an initial radius varying as a Legendre polynomial of order 4 (see Lundgren and
Mansour [26] and Sussman and Smereka [35]). The initial interfacial position of the 2D
drop is defined by the radius

R(θ) = R0+ R0

100
P4(cos(θ)) sin(ω4θ), (47)

where

ω2
4 =

360

5.04R2
0 We

.

In Eq. (47),θ is an Euler angle,P4 is the Legendre polynomial of order 4, andR0 is the
reference radius of the droplet. The density ratio is 100 : 1, the viscosity ratio is 100 : 1,
and the surface tension is 0.5 N·m−1. Two and three grid levels were computed with a
50× 50 coarse mesh andh0 = 0.8 mm. Figure 14 displays the motion of the viscous drop
obtained using two multigrid levels every 0.01 s. Owing to the action of surface tension
forces, the perturbed drop oscillates in a nonlinear way with a 0.08-s period. The viscosity
action causes the kinetic energy to be dissipated with time. The behaviour of the drop is
similar to that computed in axisymmetric problems by Lundgren and Mansour [26] using
a boundary integral method and by Sussman and Smereka [35] with a level-set method.

Figures 15(a) and is 15c show that the diffusion of the Lax–Wendroff TVD treatment in
the interface capturing step I Cn remains compact on four on five cells even after hundreds of
time steps. The local space and time adaptive character of the OCLM method is demonstrated
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FIG. 14. Multigrid simulation of the dynamics of a 2D viscous drop initialised with aP4 shape. The compu-
tation starts with a 50× 50 coarse grid and one multigrid level. The solution is presented each 0.01 s from left to
right and from top to bottom.

FIG. 15. Drop motion after a half period. The diffusion of the multigrid solution is presented respectively for
the first test onG3 after 0.2 s in (a) and for the second test onG2 after 0.04 s in (c) (contours 0.01, 0.5, and 0.99 are
plotted). The local mesh refinement structure is shown for three-level multigrid simulations of the two nonlinear
oscillation drop problems in (b) and (d).
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TABLE I

Convergence Study for Nonlinear Drop Oscillation Problems

Square drop test (t = 2.0 s) Legendre perturbed drop test (t = 0.09 s)

Grid Surface (cm2) ES (cm2) Order Surface (cm2) ES (cm2) Order

G0 13.9470 0.1130 N/A 3.4401 0.0309 N/A
G1 14.0472 0.0128 2.0 3.4675 0.0035 2.0
G2 14.0586 0.0014 2.0 3.4706 0.0004 2.0

Note.The volume conservationES is achieved with second-order convergence rate from a coarse
grid to a finer one.

in Figs. 15b and 15d. In Table I, convergence results for the two-drop oscillation tests are
illustrated when progressively finer grid levels are added. The initial surfaces of the square
rod and of the Legrendre perturbed drop are 14.06 cm2 and 3.471 cm2. A second-order
convergence rate was detected on volume conservation in both problems. At each grid
level, the differenceES,M between the multigrid and the single-grid interface position was
always less than half a cell. The sensitivity of the solution to the values ofBs

u andBv
u is

similar to the behaviour observed in Fig. 5. Maximum values of 0.31 and 0.2 were measured
respectively in the square rod and in the Legendre perturbed drop tests for the geometrical
improvementRGI. In this way, it was verified that the multigrid computation requires 70 to
80% less memory than the single-grid simulation.

The surface tension is immediately taken into account in the OCLM method by means
of source terms which are added into the motion equations. The order of magnitude of the
parasite currents is not emphasised by the OCLM method.

4.2. Solving Two-Dimensional Rayleigh–Taylor Instabilities with the OCLM Method

The Rayleigh–Taylor instability is a classical and widely studied interfacial problem that
underlines the competition between the viscous terms and the surface tension force. If we
analyse a horizontal fluid stratification, with the heavy fluid lying above the lighter one, any
disturbance of the interface between these fluids becomes amplified due to gravity, but the
surface tension force tends to counteract this and to minimise the deformation of the free
surface. This problem is unstable for any fluid and for any perturbation. It was decided to
simulate this problem with the OCLM method in order to emphasise the competitiveness
of the local adaptative multigrid architecture in solving multiphase flows, when strong
stretching of the free surface occurs.

Three multigrid simulations were carried out on two and three grid levels (Fig. 16). The
viscosity is the same in the two fluids. The characteristics of the three problems are the
following: We= +∞, A = 0.11 and Re= 200 in case (a), We= +∞, A = 0.33, and
Re= 500 in case (b), and We= +∞, A = 0.5 and Re= 700 in case (c). The results pre-
sented correspond to all the literature dedicated to Rayleigh–Taylor instabilities (Tryggvason
[40] or Unverdi and Tryggvason [41], for example). In the different proposed simulations,
the computations consider various Atwood numbers, which correspond to small as well as
relatively large differences betweenρ1 andρ0. For any Atwood number, non symmetry of
the flow appears between the upper and the lower part of the calculation domain, owing to
the increased influence of the gravity on the heavy fluid. This phenomenon can be observed
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FIG. 16. Numerical simulation of several two-dimensional Rayleigh–Taylor instabilities using the OCLM
method with three grid levels. The computations start on a 30× 60 coarse grid. The initial perturbations are 10%
of the domain height. The viscosities are the same in the two fluids. The results are presented respectively at time
1.5 s for (a) and (d), 1 s for (b) and (e), and 0.75 s for (c) and (f). The interface solution (C = 0.5) resulting from
a three-grid-level simulation (upper pictures) and the diffusion of the phase function onG2 (lower graphs) are
presented. (a) and (d) We= +∞, A = 0.11, and Re= 200; (b) and (e) We= +∞, A = 0.33, and Re= 500;
(c) and (f) We= +∞, A = 0.50, and Re= 700.

in [40, 41]. All the computations presented in this section were carried out on a MIPS
R10000 processor with a maximum CPU speed of 180 MHz.

As previously observed in the scalar tests, the local character of the OLCM method is
perfectly controlled by means of the physical criterion Crphys. The quality of the local grid
refinement near the free surface is directly bound to the reduced diffusion of the TVD
interface-tracking algorithm (see Figs. 16d and 16e) so that (16) is verified on a small
number of cells. The almost discontinuous solution provided by the Lax–Wendroff TVD
scheme (7) allows a very local mesh refinement structure concentrated on the interface to
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be obtained. The results presented in Fig. 16 (upper part) are almost comparable to the
solutions obtained on an equivalent unique grid. For instance, a maximum local errorES,M

of 0.00053 m was found between the single-grid and multigrid solutions onG2.
In local multigrid computations of interfacial problems, the calculation time and the

memory costs arise from the solution of the model on a coarse grid, where the memory and
the calculation time are more or less constant during the simulations, and from the calculation
of the numerical solution on the multigrid levels. If we characterise the repartition of the
fine cells obtained with the physical criterion Crphys for several computations presented
in this article (Figs. 7, 9, 11, 15, and 16), it is seen that the width of the band of fine
cells surrounding the interface represents four or five cells in the whole solution on every
multigrid level. As the width of the band of cells wrapping the free surface is not dependent
on the coarse grid resolution nor on the calculation time, for a chosen problem, the cost of
the OCLM method will only be dependent on the interface length. This assumption can be
verified in Zalesak’s test (Fig. 9), where the number of multigrid cells is almost constant with
time on each multigrid level. As the surface between two states of the phase function is not
deformed, the length of the interface remains constant during the computations. Figure 17

FIG. 17. Evolution of the calculation point ratesRGI on the multigrid levell = 1, 2. The results correspond
to the computations presented in Fig. 16. (a)A = 0.11 and Re= 200, (b)A = 0.33 and Re= 500, (c)A= 0.50
and Re= 700.
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describes the evolutions of the calculation point rateRGI with time in the problems presented
in Fig. 16. In the first phase, up tot = 0.1 s, a rapid increase of the calculation point
rate arises from the appearance of the numerical diffusion in the solution, whereas after
t = 0.1 s, RGI increases regularly. As described previously, this increase is directly due to
the increase of the interface length in the Rayleigh–Taylor instability.RGI can be considered
as a measure of the free surface stretching. If it is constant, the interface evolutions are
slight (approximately the lengthscale of the finer grid level), whereas the deformations are
considerable if it increases. In all cases, important gains in memory can be measured (50
to 80%).

To study the sensitivity of the OCLM method in relation to the criterion of interface
detectionεI and the convergence threshold of the Navier–Stokes iterative solverεN,S, a
representative Rayleigh–Taylor problem (A = 0.33, Re= 500) was computed for several
values of the numerical parametersεI andεN,S. A reference numerical solution was calcu-
lated on a 270× 540 single grid. Several multigrid simulation, corresponding respectively
to 10−2 ≤ εI ≤ 2 · 10−1, 10−2 ≤ εN,S ≤ 10−13, and 1≤ lmax≤ 2, were compared to the
assumed reference solution.

OCLM method remains slightly dependent on the interface detection thresholdεI

(Table II). The difference between the multigrid and the reference numerical solution are
almost identical whenεI varies and 0< εI < 0.2. Even for high values ofεI , 0.2 for exam-
ple, the obtained solution is satisfying. However, whenεI > 0.1, a small quantity of residual
points very near the interface are not dealt with by the OCLM method. These residues can
lead to nonnegligible errors in certain cases, when the free surface covers the same region
several times during the calculations. The differenceES between the initial volume and the
volume provided by the numerical solution remains unaffected by the value ofεI . Only the
number of discretisation points is important to ensure suitable volume conservation.

The convergence threshold of the motion equation solution controls the precision with
which the incompressibility constraint is verified. Contrary toεI , the disparities between
solutions can be high whenεNS varies (Table II). For small values ofεNS, the results
obtained are almost identical and the local differences evolve only slightly. However,
sinceεNS > 10−4, ES,M admits nonacceptable values. In this case, relatively important
differences were observed between the multigrid solution and the reference one. Owing

TABLE II

Behaviour of Multigrid Solutions According to the Interface Detection Threshold

εI and the Divergence ThresholdεNS

Memory Time ES,M ES

Convergence thresholds lmax Fine grid (Mo) (h) (10−3 m) (10−3 m2)

εI = 10−2, εNS = 10−13 3 270× 540 4.17 63.42 0.50 0.055
εI = 10−1, εNS = 10−13 3 270× 540 4.17 60.94 0.69 0.056
εI = 2 · 10−1, εNS = 10−13 3 270× 540 4.17 58.22 0.86 0.060
εI = 10−1, εNS = 10−8 3 270× 540 4.17 55.73 0.70 0.056
εI = 10−1, εNS = 10−2 3 270× 540 4.17 24.91 1.2 0.10
εI = 10−1, εNS = 10−13 2 150× 300 1.81 15.36 0.47 0.078

Note.Raylaigh–Taylor instabilities corresponding toA = 0.33 and Re= 500 are studied. Comparisons are
presented on the computational time and memory, the differenceES,M between a single- and a multigrid solution,
and the volume conservationES.
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to the hypothesis of locally isovolume flow, obtaining a satisfying solution near the in-
terface requires defining a very small convergence threshold, leading to an almost perfect
divergence-free- velocity field. The error, due to motion equation solving, induces a more
or less approximate redistribution of phase functionC. For complex multiphase flows, the
resulting error on the update of the physical characteristics can lead to unphysical solutions.
In the same way, the volume conservation is damaged whenεNS is increased.

Starting on a 50× 100 grid with one multigrid level offers better results than choosing a
30× 60 coarse grid withlmax= 2, as shown in Table II. On the very coarse 30× 60 grid, the
interface location is approximate and the resulting Navier–Stokes solution onG0 is worse
than the one on the 50× 100 coarse grid. When studying multiphase flow problems, as for
all problems of strongly unsteady flows (turbulence for example), a minimum number of
meshes is necessary to accurately solve the problem. This observation applies to the multi-
grid solver. However, several restriction procedures, which are based upon flux conservation
properties, are currently being implemented to improve the results on the coarse grid and
to limit the dependency of the accuracy of the solution on the fine gridGlmax according to
the precision ofG0.

In the Rayleigh–Taylor instability considered in Table II (A = 0.33 and Re= 500), the
calculation point rate logically increases whenεI increases. The behaviour ofRGI is similar
to that described in Fig. 17. The increase in the number of calculation points whenεNS

varies(10−2 < εNS < 10−13) is not presented in this article because the gaps between the
different RGI are less than 1% in these cases.

As observed in the previous sections, a second-order convergence rate of the OCLM
method was measured (Table III and Fig. 18) with respect to volume conservation and

TABLE III

Effect of the Grid Size and the Number of Multigrid Levels lmax on the Calculation Time,

the Memory Costs, the DifferenceES,M between a Single- and a Multigrid Simulation, and the

Volume ConservationES for Three Rayleigh–Taylor Problems

Problem 1 Problem 2 Problem 3

A = 0.11, Re= 200 A = 0.33, Re= 500 A = 0.5, Re= 700

Number of 0 0 1 2 0 0 1 2 0 0 1 2
multigrid
levelslmax

Resolution of 90 270 90 270 90 270 90 270 90 270 90 270
the equivalent
single-grid
solution in the
x-direction

Resolution of 180 540 180 540 180 540 180 540 180 540 180 540
the equivalent
single-grid
solution in the
y-direction

Memory (M0) 3.07 26.02 1.35 4.88 3.07 26.02 1.29 4.17 3.07 26.02 1.20 3.54
Time (h) 3.11 125.94 9.25 72.26 2.12 107.25 7.49 63.42 1.88 94.30 6.81 61.83
ES,M (10−3 m) 0 0 2.7 0.33 0 0 2.5 0.30 0 0 2.4 0.27
ES (10−3 m2) 2.48 0.28 0.52 0.058 2.44 0.27 0.49 0.055 2.42 0.27 0.48 0.053
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FIG. 18. Evolution of the difference between a multigrid and a single-grid solutionES,M according to the
average number of multigrid calculation pointsNm. Nm is defined as the square root of the number of multigrid
calculation points onGl , 0≤ l ≤ lmax.

interface position. Table III illustrates a decrease in memory costs of 50 to 85%. The gains
in memory are greater when the size of the coarse grid is increased. The calculation time of
the OCLM method is four to five times higher than the computational time of a single-grid
simulation whenNSG

CP is weak. In such cases, the multigrid architecture (detection proce-
dure, projection procedure, etc.) hugely penalises the computational time of the method.
However, whenNSG

CP increases, the preconditioning of the linear system, resulting from the
discretisation of the motion equations on a single grid, becomes very expensive and the
OCLM method, thanks to it local character (5× 5 multigrid calculation domains), becomes
less costly in calculation time than the single-grid approach.

Finally, the results of the OCLM method are compared to the analytical solution of the
instability amplitude evolution proposed by Chandrasekhar [6]. From the linear theory, the
amplitudeA of the initial perturbation of the free surface is found to increase as

A = A0 cosh(nt), (48)

whereA0 is the amplitude of the initial perturbation,

n =
[

2π(ρ2− ρ1)

λ(ρ2+ ρ1)

]1/2

,

and

λ = 4π

[
4µ2

g
(
ρ2

2 + ρ2
1

)]1/3

.

The multigrid solution shows a marked improvement, as presented in Fig. 19. The gap
between the solutions is small in comparison to the space scale of the coarse grid. It should
be noticed that the differences between the numerical results onG0 andG2 quickly stabilise
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FIG. 19. Amplitude evolution of a Rayleigh–Taylor instability when We= +∞, Re= 50, andA = 0.33.
Comparison among the linear theory, the multigrid solution withlmax = 2, and the results on the 20× 40 coarse
grid.

in time and the various solutions remain, overall, very close, as demonstrated in all the
previous Rayleigh–Taylor simulations presented in this article.

4.3. Droplet Impact on a Liquid Film

The impact of a cylindrical rod on a liquid film was computed in a box, open in its
upper limit. The OLCM method allows us to illustrate the spreading of the 2D drop and the
“splash” phenomenon that proceeds this. The simulations were started when the drop came
into contact with the liquid film. Initially, a constant impact velocityu0 was imposed on the
rod. The same liquid was considered in the drop and in the film. LetH be the height of the
film, L the width of the box, andR the radius of the cylindrical rod. Figure 20 illustrates
simulations usingH = 1.6 mm, R= 1.2 mm, L = 10.66 mm, andu0 = (0, u0,y) with
u0,y = 5 m· s−1. Characteristics ofσ = 0.075 N·m−1, ρ1/ρ0 = 103, andµ1/µ0 = 103

were chosen. Just after the impact, a strong pressure was generated at the impact point
which was then transmitted to the bottom of the film. In the initial stages of the spreading
of the drop (0.16 ms), the free surface evolution was unsteady (see Fig. 20) and drops were
ejected from the liquid film to the top of the cavity. Then, the liquid rising from the bottom
of the film created a nonlinear wave at the periphery of the spreading drop (0.32 ms).
Finally, the splash phenomenon was characterised by the formation of a liquid lamella
(1.04 ms) that spreads from the impact point to the edge. This is due to the correlated action
of the strong inertia arising from the dynamics of impact and the motionless liquid near
the boundaries. The coupling between an LWT interface-tracking method and a local mesh
refinement method describes the merging of the drop with the liquid film and the ejection of
small liquid drops. In spite of the diffusion appearing in the shearing zone of the interface
(Fig. 21) at the tip of the lamella, a second-order convergence was measured in this problem
(Table IV). A comparison between the solution proposed in Fig. 20 and the results computed
with an equivalent single grid shows differences more or less equal to the fine grid cell.
Indeed, after 1.04 ms,ES,M is equal to 3.4310−5 m. The geometrical improvement ratio is
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FIG. 20. Numerical simulation of droplet impact on a liquid film. Two grid levels are computed with a
100× 50 coarse grid. The viscosity and density ratios are equal to 103. The results are presented at times 0.0,
0.16, 0.32, and 1.04 ms.
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FIG. 21. Diffusion of the phase function 1.04 ms after impact. Isolines 0.05, 0.5, and 0.95 are presented.
Artificial diffusion is generated at the tip of the spreading lamella, where the shearing is important.

not presented for the drop impact problem because the same bahaviour as in the previous
sections was observed. A maximum value of 0.12 was measured forRGI.

A comparison with the results of Yarin and Weiss [51] on ethanol drops was carried
out. LetCc be the nondimensional crown radius,Rc the nondimensional rim elevation of
the lamella, andHc the nondimensional bump radius. These characteristic variables of the
flow are made nondimensional thanks to the initial radius of the drop. Correlation appears
between the observations of Yarin and Weiss and our results: the crown radiusCc evolves
as a square root function of time, the rim elevationRc is linearly dependent on the radius
Cc of the lamella, and the difference(Hc− H) evolves linearly with time.

5. CONCLUSIONS

An original one-cell local multigrid (OCLM) method for computing two-dimensional
unsteady and incompressible multiphase flows has been presented. An implicit augmented
Lagrangian method has been used to solve the coupling between pressure and velocity as
well as the incompressibility constraint. The motion of the interface has been modelled by
solving a conservation law for a phase function by means of a Lax-Wendroff TVD scheme.
The local character of the adaptative mesh refinement method has been used to focus
the computations on cells surrounding the interface. The Navier–Stokes equations have
been successfully solved using the OCLM method (see Fig. 22) thanks to the development

TABLE IV

Convergence Study for Drop Impact on a Liquid Film

Grid Surface (cm2) ES (cm2) Order

G0 0.2027 0.0123 N/A
G1 0.21364 0.00136 2.0
G2 0.21483 0.00017 2.0

Note.The volume conservationES is studied for a three-level
multigrid solution.
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FIG. 22. Numerical simulation of a Rayleigh–Taylor instability using the OCLM method withlmax = 1. The
characteristics of the problem are the following: We= +∞, A = 0.05, and Re= 10. G0 is a 40× 80 grid. The
left side of the picture presents the velocity field onG1 and the right side the comparison between the solutions
on G0 andG1. The fine-grid solution is the most stretched one.
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of new composite boundary conditions (CBC). The multigrid method has been validated
against several two-dimensional simulations including the vortex test, bubble oscillations,
Rayleigh–Taylor instability, and the droplet impact on liquid film. Convergence, memory,
and time performance have been estimated in all the problems solved.

Several objectives have been reached:

• The local mesh refinement method can track a free surface on several grid levels
maintaining the refined control volumes over a maximum of four or five cells around the
interface.
• The ratio between the number of multigrid and equivalent single-grid calculation points

is always less than 25%. Memory costs have been decreased by 50 to 80% in real two-phase
flow simulations.
• The OCLM solution requires less computational time than the comparable single-grid

solution as soon as the problem becomes complex in terms of mesh size and interface
deformations.
• The difference between the multigrid and the single-grid solutions and the conservation

of the fluid volumes converge with second-order rates.

Future research and further developments are planned on the OCLM method:

• The methodology presented in this article is currently undergoing extension to three-
dimensions. Problems requiring large three-dimensional grids, such as the droplet impact
on liquid film or the viscous liquid jet flattening under three-dimensional instability [49], are
being solved with the OCLM method. On modern computers, it is expected that grids as large
as 5003 or 10003 can be reached. Implementing dynamic memory allocation is necessary
to maximize the benefits from the OCLM method. In the present work, a FORTRAN 90
program was developed.
• Work still has to be carried out to improve the coupling between the fine and the coarse

grids. The development of the CBC proposed in this article could certainly be completed by
taking into account the surface tension and the two-phase character of the flow in the viscous
stress tensor. Moreover, assuming the OCLM method to be a discretisation on a globally
unstructured mesh (locally orthogonal Cartesian grid), we are currently generalising this
method to a fully implicit solver. In this way, all the grids are solved at the same time by
linking unknown variables in a unique linear system.
• The OCLM method is a universal multigrid algorithm, applicable to single fluid as

well as multiphase flow problems. The scale changes can lead to solving different models
according to the scales of the phenomena, or to computing different numerical solvers. One
can imagine solving the problem on the coarse grid with a preconditioned iterative solver,
whereas a direct resolution method such as the LU one would be implemented on the fine
grids, where the size of the linear system is reduced. In the same way, without any particular
work, a Marker technique, a PLIC VOF method, or a level-set approach could be used in the
OCLM method to track the interface, whereas a projection method could be implemented
to solve the motion equation.
• The linear systems are solved independently on the different multigrid calculation

domains, as the coupling between each fine grid is provided by the interpolation and the
restriction operators. A parallelisation of the OCLM method will be carried out in the near
future. We can expect the calculation time to be significantly reduced. Moreover, thanks to
the reasonable memory and calculation costs of the multigrid method, bigger coarse grids
could be chosen in three dimensions while a suitable calculation time was maintained.
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APPENDIX A

Q1 Interpolation Operator

To initialise a scalar or a vectorial unknown variable on a subgridGl ,s, an interpolation
operatorPl−1,l is carried out between a coarse gridGl−1 and a fine gridGl . If Crphys> 0 at
point (i1x, j1y) ∈ Gl−1, a Q1 polynomial interpolation, associated to the extension of a
scalar fieldφ on the control volume cell(i, j ) (see Fig. 23), is developed according to the
coarse grid values ofφ as

φi l ,i l = Pl−1,l (φ
l−1, I , J)

=
[
1− Incx

Ref
− Incy

Ref
+ Incx · Incy

R2
ef

]
φl−1

I,J +
[

Incx

Ref
− Incx · Incy

R2
ef

]
φi−1

I+1,J

+
[

Incy

Ref
− Incx · Incy

R2
ef

]
φl−1

I ,J+1+
[

Incx · Incy

R2
ef

]
φl−1

I+1,J+1, (49)

where i l and jl are indices on the fine gridGl , I and J are indices on the coarse grid
Gl−1, φ

l−1 is the scalar variable onGl−1, Incx and Incy are position indices in the refined
cell, Ref is the odd refinement rate, andφi l , jl is the interpolated function onGl . In the present
article,Ref is chosen to be 3.

The refinement criterion Crphys defined in (16) is only estimated at the physical nodes.
Consequently, as a staggered MAC grid is implemented to discretize the equation system,
the statement of the position indices Incx and Incy is different according to whether we
consider a scalar or a vector unknown variable (Fig. 23). The general expression for these
indices is {

Incx = i l − i Ref+ Sx,

Incy = jl − j Ref+ Sy,
(50)

whereSx and Sy are gap indices due to the MAC grid. For example, to interpolateC or
p with (50), Sx = 0 andSy = 0. However, ifu is expended fromGl−1 to Gl , the indices

FIG. 23. Physical variable position and indices on a refined cell.
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TABLE V

Interpolation Indices in Each Space Direction

and Grid Definition for a Scalar and a Vectorial

Variable

Refinement ofGl−1 at point(i, j )

Scalar variable
Interpolation on a 3× 3 grid

x-direction Nodes 3i − 1 to 3i + 1
y-direction Nodes 3j − 1 to 3j + 1

Vectorial variable
Interpolation of the first component on a 4× 3 grid

x-direction Nodes 3i to 3i + 4
y-direction Nodes 3j to 3j + 3

Interpolation of the second component on a 3× 4 grid
x-direction Nodes 3i to 3i + 3
y-direction Nodes 3j to 3j + 4

corresponding to its first componentux areSx = 1 andSy = 0, whereas the ones dedicated
to the second componentuy areSx = 0 andSy = 1. When the point(i, j ) is detected to be
refined onGl−1, a scalar field and a vector field are prolongated on the same refinement cell
but they are not interpolated on the same grid, as described on Fig. 23.

Table V provides the extension indices in each direction on the fine grid. According to
the type of variable considered, the resulting grid dependency ofPl−1,l on the coarse values
is different. Nine coarse points are needed to interpolate a scalar fieldφ,

φI ,J

{
I = i − 1, i + 1,

J = j − 1, j + 1.

For a vector field, six points are expected for each component. For example, the interpolation
operator on the first component ofu needs the coarse terms

uxI ,J

{
I = i, i + 1,

J = j − 1, j + 1,

whereas the second component requires the use of

uyI ,J

{
I = i − 1, i + 1,

J = j, j + 1.

A generic interpolation algorithm is deduced from the previous expressions and comments
as detailed in (51). The parametersSx andSy allow us to apply the same extension procedure
to any detected point and to any variable. They ensure the gap of the loop indices in the
interpolation routine

For Incx = (−1+ Sx) to(1+ 2Sx)[
For Incy = (−1+ Sy) to(1+ 2Sy)

Pl−1,l
(
φl−1, INT

( Ref·i l−1+ Incx

Ref

)
, INT

( Ref· jl−1+ Incy

Ref

))
,

(51)
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wherei l−1 and jl−1 correspond respectively to the coordinatesi and j of a coarse point to
be refined and INT is the integer part of a real number.

APPENDIX B

Divergence of the Interpolated Velocity Field

We consider in this section a pressure control volumeVl−1,s
c of Gl−1 which is detected

by the refinement criterion Crphys. It is supposed that the solution(ul−1,n+1, pl−1,n+1) on
the multigrid levell − 1 has been calculated by the solver ALn+1− ICn+1. The local mesh
refinement procedure generates a 3× 3 grid Gl ,s′ corresponding to the cutting ofVl−1,s

c ·
(ul−1,n+1, pl−1,n+1) is interpolated onGl ,s′ with the Q1 interpolation operator presented in
appendix A. We propose to calculate the sum of the divergence of the interpolated velocity
field ul ,n+1 on Gl ,s′ . A discrete coordinate system is introduced onGl ,s′ to locate each
component of the velocity field on the 3× 3 MAC grid: ux is characterised by the indices
i x and jx whereasi y and j y describeuy. The staggered grid induces the following variation
gap of indexes (see Fig. 24):

1≤ i x ≤ 4 and 1≤ jx ≤ 3,
(52)

1≤ i y ≤ 3 and 1≤ j y ≤ 4.

ul−1,n+1 satisfies the divergence-free property with a nearly computer error. In this way,
∇ · ul−1,n+1 is equal to 0 onVl−1,s

c . In discretized form one obtains

ul−1
xi+1, j
− ul−1

xi, j

hl−1
+ ul−1

yi, j+1
− ul−1

yi, j

hl−1
= 0, (53)

FIG. 24. Description of the discrete distribution of the velocity field on a coarse control volumeVl−1,s
c detected

to be refined and on the corresponding fine gridsGl ,s′ . Indicesi x, i y, jx, and j y are introduced to discretizeul ,n+1.
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whereul−1
xi+1, j

, ul−1
xi, j
, ul−1

yi, j+1
, andul−1

yi, j
are respectively the horizontal and vertical components

of ul−1,n+1 on Vl−1,s
c (see Fig. 24). LetSl ,s′

div be the sum of the discrete divergence onGl ,s′ .
One then obtains the expression

Sl ,s′
div =

3∑
i x=1

3∑
jx=1

uxix+1, jx
− uxix , j x

hl
+

3∑
i y=1

3∑
j y=1

uyi y, j y+1 − uyi y , j y

hl
. (54)

Substituting the values of the velocities deduced from the interpolation procedure, one can
write expression (54) as

Sl ,s′
div =

7

3

(ul−1
xi+1, j
− ul−1

xi, j

hl
+ ul−1

yi, j+1
− ul−1

yi, j

hl

)
+
(ul−1

xi+1, j−1
− ul−1

xi, j−1
+ ul−1

xi+1, j+1
− ul−1

xi, j+1

3hl

+ ul−1
yi−1, j+1

− ul−1
xi−1, j
+ ul−1

yi+1, j+1
− ul−1

yi+1, j

3hl

)
. (55)

Taking into account the incompressibility oful−1 onVl−1,s
c through expression (53) in (55),

we show thatSl ,s′
div 6= 0. Indeed, we have

A = ul−1
xi+1, j−1

− ul−1
xi, j−1
+ ul−1

xi+1, j+1
− ul−1

xi, j+1

hl−1
6= 0,

(56)

B = ul−1
yi−1, j+1

− ul−1
xi−1, j
+ ul−1

yi+1, j+1
− ul−1

yi+1, j

hl−1
6= 0.

We thus have demonstrated that the interpolated velocity field does not verify the divergence-
free property onGl ,s′ . The error induced by the interpolation procedure on the incompres-
sibility constraint is directly obtained from (56) as the sum ofA andB.
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composantśelectroniques(Ph.D. thesis, University of Bordeaux I, 1989).

3. M. J. Berger and P. Collela, Local adaptative mesh refinement for hyperbolic partial differential equations,
J. Comput. Phys.82, 64 (1989).

4. J. U. Brackbill, B. D. Kothe, and C. Zemach, A continuum method for modeling surface tension,J. Comput.
Phys.100, 335 (1992).

5. J.-P. Caltagirone, K. Khadra, and P. Angot, On a local multigrid mesh refinement method for solving Navier–
Stokes equations,C. R. Acad. Sci. Ser. IIb320, 295 (1995).

6. S. Chandrasekhar,Hydrodynamic and Hydromagnetic Stability, Oxford Univ. Press, Oxford, 1961.

7. A. Chapman, Y. Saad, and L. Wigton, High order ILU preconditioners for CFD problems, AMSI Technical
Report, 1996.

8. B. J. Daly, Numerical study of two-fluid Rayleigh–Taylor instability,Phys. Fluids10, 297 (1967).

9. B. J. Daly, Numerical study of the effect of surface tension on interface instability,Phys. Fluids12, 1340
(1969).

10. A. Elgowainy and N. Ashgriz, The Rayleigh–Taylor instability of viscous fluid layers,Phys. Fluids9(6), 1635
(1997).



214 VINCENT AND CALTAGIRONE
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