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An original local multigrid method for solving incompressible two-phase flow
with surface tension is described. The dynamics of the interface are resolved on a
hierarchy of structured and uniform grids (orthogonal Cartesian meshes). A new type
of composite boundary condition is proposed to solve the dynamics of the multigrid
calculation domains. The interface tracking is described by a TVD VOF algorithm
and the equations of motion are solved using an augmented Lagrangian method.
The surface tension is calculated using a continuous surface force method. The one-
cell local multigrid method is compared to relevant analytical scalar advection tests.
Several classical two-phase flow problems, including nonlinear drop oscillations,
Rayleigh—Taylor instabilities, and the drop impact on liquid film, have also been
considered. The local character of the method and the differences between a single-
grid and a multigrid solution are discussed. For unsteady problems, such as the
Rayleigh—Taylor instability, the memory costs and the computational time have been
reduced by up to 50%. @ 2000 Academic Press
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1. INTRODUCTION

Experimental and theoretical studies of incompressible multiphase viscous flows,
volving three-dimensional free surface instabilities or very strong interface tearing &
stretching, are difficult to perform. However, free surface flows clearly need to be bet
understood to develop improved models for industrial applications. Numerical methc
have begun to be used to simulate the flow dynamics of the problem. Numerous rese
projects are now under way to improve both the modelling and the understanding of f
surface flows.

Two approaches have generally been used to perform direct numerical simulations of t
phase flows. In the Lagrangian approach, the grid follows the motion of the interface.
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adaptative grid is first built to fit the interface between the two phases. The conservation e
tions are then solved for the “discretized fluid.” Finally a remodelling of the grid is carrie
out with the grid being moved and deformed to take into account the Lagrangian evolut
of the free surface. This technique, which uses finite element or curvilinear finite volul
discretizations, has been adapted to thin process studies, occurring near slightly def
ing interfaces (Magnaudet al.[27]). However, in three-dimensional unsteady flows with
strong interface deformations, the Lagrangian approach proves too expensive in calcul:
time. When the free surface stretching is too high, it becomes very difficult to impleme
due to the frequent remeshing required. In the Eulerian approach, a single Navier—St
equation system is solved on a fixed Cartesian grid over the whole computational dom
with variable density and viscosity. Different techniques are used to take into account
evolution of the phase distribution, for example, the marker method (Daly [8, 9], Rider a
Kothe [31], Popinet and Zaleski [30]), the level-set method (Sussman and Smereka [3
or the volume of fluid method (Hirt and Nichols [18], Youngs [52], or Rudman [32]). A
each calculation time, they all allow the free surface evolution associated with the velo
field to be precisely predicted. The physical properties of the unique mixed fluid are tt
redistributed according to the new phase arrangement. Finite volumes on a MAC (ma
and cell) grid are commonly used to discretize the Navier—Stokes equation system. Ev
the Eulerian approach is less precise than the Lagrangian one, it allows the direct nume
simulation of three-dimensional multiphase flow problems to be easily programmed wt
the interface is strongly distorted.

In spite of the methods described above, significant unsolvable problems still existin fl
mechanics (Scardovelli and Zaleski [33]). Difficulties arise when large three-dimensio
simulations are performed at high Reynolds numbers because thin boundary layers |
to be accurately resolved. For example, the flattening of a water droplet on a water |
in a gaseous medium or a liquid metal particle crush on a solid substrate is still unsol\
Owing to computer memory limits, the existing surface- or volume-tracking methods
not provide suitable solutions for three-dimensional nonsymmetric problems. On the
hand, the gigantic grids generated cannot be stored on most computers (even those
parallel architectures), and on the other hand, the extensive computational time make
computations impracticable. The only suitable solution is to consider symmetries in
problem in question and to couple the numerical solver with parallel algorithms. With su
an approach, Gueyffier and Zaleski [12, 13] were able to simulate the splashing of a c
on a liquid film in three dimensions.

To reduce the number of computational nodes several authors have suggested the ic
refining the grid near the free surface, since most of the phenomena are concentrated
the interface. Loclet al. [25] proposed an Eulerian unstructured finite element metho
which locally adapts the mesh near the interface at each iterative time step. However
three-dimensional simulations, the problem of lack of memory remains because the lir
system generated is still very large. A full approximation storage (FAS) multigrid techniq
was introduced by Thompson and Lezeau [39] for two-dimensional, steady, incompressi
viscous multiphase flows. However, this method is neither local in space nor adaptive ¢
time. It is clearly applicable to convergence acceleration of local iterative solvers, |
it does not provide any memory or calculation time improvements. An AMR (adapti
mesh refinement) multigrid method was also presented by Sussh@{36] to handle
two-phase flows with a level-set method. Even if the AMR technique limits the numb
of calculation nodes and allows the flow resolution scales to change, this method is
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local enough to meet the memory requirements described above. Strain [34] implement
semi-Lagrangian level-set method on a quadtree mesh. In his tree method the computat
effort is concentrated on the interface and the accuracy is comparable to that of a unifi
mesh method, while time and memory costs are lower. The results are very promis
for scalar velocity field problems. However, no coupling to a Navier—Stokes solution
presented.

Building an algorithm that refines the grid near the interface is fundamental to a
improved method and has to be developed by means of a multigrid method, in orde
reduce the linear system size. This method must be able to change the scale of the
lution on only one or two cells if necessary. In this way, a three-dimensional calculati
algorithm can be obtained that is able to solve, for example, the “crownlike” instabili
of a droplet splashing on a thin liquid film (Yarin and Weiss [51]), where the lengtt
scale ratio between the initial droplet diameter and the finger diameter can be as t
as 50.

In the present paper, a new local multigrid method is presented, which offers the po
bility of zooming onto one calculation node and obtaining a solution using a refined g
around this node. The OCLM (one-cell local multigrid) technique is a general algorith
independent of the discretization schemes and the Navier—Stokes solver. When the re
ment criterion is fulfilled on any one node, a small calculation domain (nine cells) is bu
over this node. The solution for the multigrid domains is calculated by the same pro
dure as that used on the original coarser grid. An original augmented Lagrangian metf
coupled to a BICGSTAB solver, is investigated to numerically solve the motion equati
system, and a VOF-like algorithm, based on total variation diminishing (TVD) schemes
developed to handle the interface tracking procedure. The Navier—Strokes solver is ch
for its robustness and the TVD method for its easy programming. A new type of compo:s
boundary conditions is developed to solve the flow at the cell scale. Finally, this robust ¢
flexible OCLM method can act as a zoom, able to solve the multiphase flow at differe
space scales.

After a complete presentation of the solution to a multiphase flow using a coarse grid,
OCLM method is described and validated with different scalar front tracking tests. Classi
two-phase flow problems such as nonlinear drop oscillations, Rayleigh—Taylor instabiliti
and drop impacts on liquid films are simulated in two dimensions. The capacity of tf
method to accurately track surface deformation and stretching is demonstrated, as we
its ability to save computer time and memory storage.

2. GOVERNING EQUATIONS AND RESOLUTION ALGORITHM FOR A SINGLE GRID

2.1. One-Fluid Model

A single set of two-dimensional and incompressible Navier—Stokes equations with vz
able density and viscosity is solved over the entire domain. The conservation equati
are convolved with an indicator functid®, which is taken to be zero in one fluid and one
in the other fluid. Letu be the velocity fieldg the gravity vectorp the pressures the
surface tensiorg the curvaturey the viscosity, ang the density. If the sliding between
the phases is taken as being negligible, the velocity field can be assumed to be contin
through the free surface. Without any phase changes the incompressible flow can the
considered locally isovolume. In a uniform Cartesian coordinate systeg),(associated



ONE-CELL LOCAL MULTIGRID METHOD 175

with a bounded domaif®, the one-fluid model can be expressed as

p = po+ (p1— po)C (1)

= o+ (11— po)C 2

V.u=0 )
{;—l;—i-(u-V)u:g—%Vp—l—%v-[u(Vu—l—VTu)]Jr%o/«Sini (4)
%vLu-VC:O, (5)

whereé; is a Dirac function indicating the interface, is the unit normal to the interface,
andpo, p1, o, @ndu; are the respective densities and viscosities in each phase.

The dimensionless parameters characterizing the flow are the Atwood ndmbép, —
00)/(p1 + po), the Reynolds number Rep Lu/u, and the Weber number We p Lu?/o .

L is a characteristic length scale of the flow anid the intensity of the velocity.

The advection equation (5) of the phase funciiror “colour function,” describes the
changes of the free surface and simultaneously characterises the evolution of the phy
characteristics of the fluids by means of (1) and (2). The interface between the fluid
defined as the discontinuity &f. In practical terms, it is the line defined Byequal to 0.5.
The two-phase flow is analysed in terms of an equivalent single fluid whose propeatids
u are related teyg, p1, o, andu, of the original two phases by the colour functionThe
model can be easily extended to flows dealing with more than two phases, by modify
the phase functio. The numerical solution of (1-5) requires special attention because
(i) the hyperbolic character of Eg. (5) and (ii) the discontinuity of the density and viscos
fields in Eq. (4).

2.2. Numerical Solution for a Single Grid

The quality of the interface tracking procedure is strongly dependent on the precision v
which the velocity field is calculated. In particular, the incompressibility condition must
satisfied to a good approximation, even with high density or viscosity ratios. Appropri
schemes must be developed to discretize the phase function equation (5) in such a way
retain the discontinuous charactei@fThe algorithms used in this section were developet
and described by Vincent and Caltagirone [43] in a previous article.

2.2.1. Interface capturing methodThe classical methods for solving the advection
equation of a discontinuous phase functi®mre derived from reformulating the problem
with a smooth function, based on different criteria such as the volume fraction (VOF-li
methods [18, 52]) or the distance function (level-set methods [8], [9, 35]). It was decid
to directly compute Eq. (5) for the sake of simplicity. Classical schemes are not efficie
enough to treat the hyperbolic character of (5) and the advection of shocks [23, 17]. Hi
order schemes, such as the Lax—Wendroff, Beam—Warming, or QUICK ones, create spul
oscillations leading to nonphysical solutions, and first-order monotonic schemes are \
diffusive. High-resolution numerical methods exist to solve scalar hyperbolic equatic
(Sweby [37] and LeVeque [23]). These methods must satisfy the property of total variat
diminishing. This implies that in the regular zones of the solution high-order resoluti
is obtained, whereas near the discontinuities or the strong variations of the solution,
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order of the method is decreased to ensure the TVD property leading to a monotc
solution.

An explicit Lax—Wendroff TVD (LWT) time-stepping scheme is used for the advectio
of the phase indicator functio (Eq. (5)). The stability conditions for this scheme are

0< N&g <1,

(6)

0<Ngg <1,

whereu = (Ux, Uy) is the velocity,N&g, = ux gy, NgL = Uy &), andAy, Ay, andAy are
the time and grid steps. With, = £ andoy = ﬁ—;, the Lax-Wendroff TVD superbee
scheme can be expressed as
C'TY% =l — oxmax0, uy) (FF = F™1 ) — oxmin(0, uo (Fy; — FY).
CMt = ClTY2 — oy max©, uy) (F7 2+ — R )
— oy min(0, uy) (F7/* ™ — FY20),

where F" =C — 54 (Uxox — Dy, and %™ =CP; — 5% (uxox + 1)y"; for the
x-direction. In these numerical flux expression%, = max(0, min(1, 29i’jj), min(2, Gi'jj))
(C1; — C'))/Ax. The ratio of slopes in the upwind directiond$; = (C"; — C"_; ;)/
(Cl.1; — C")). They-direction numerical fluxes are the same as the previous ones, but
becomesiy, Ay replacesAx, and the spatial direction subscripts are inverted.

Applying the LWT scheme for interface tracking problems (Vincent and Caltagiror
[43]) presents many advantages over classical methods: the computation is extremely
in two and three dimensions, the computational time is low (Rider and Kothe [31]) whi
compared to that for efficient VOF methods or Marker techniques, the extension to mu
phase problems (more than two fluids) is easy, and the mass conservation is checked
a second-order convergence rate. In most of the cases tested, the results were shown
similar to those from classical interface-tracking methods. However, significant differen
were observed in strongly sheared problems where the free surface was strongly stret
and local resolution only covered one or two cells. These cases are also difficult to res
by the classical methods because the VOF technique cuts the interface due to artif
numerical surface tension, the Level-Set model induces a considerable loss of mass
the Marker method involves complex calculation times and computing. The LWT interfa
capturing step (7) applied at time4t) is referred to as ICin the rest of the paper.

2.2.2. Navier-Stokes solvelThe Navier—Stokes equations are discretized by a finite
volume method on a staggered mesh (MAC, Harlow and Welsh [16]). An augment
Lagrangian procedure (Fortin and Glowinsky [11], Temam [38], Nicefaal. [28]) is
investigated to solve the coupling between the pressure and the velocity in the equatior
motion (3—4). Assuming the flow to be artificially weakly compressible wtilu = 0 is
numerically satisfied and using the mass balance equdgigtt + pV - u = 0, a relation
linking the velocity field and the volume force exerted by the pressure can be expresse

ap

—+rv.u=0, 8
s TIV-u (8)

wherer is a positive constant.
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An implicit resolution algorithm is computed to numerically translate the strong couplir
betweeru and p. The augmented Lagrangian method consists of adding the térm in
the Navier—Stokes equations. A first-order Euler scheme is used to diséneftiteso that
expression (8) can be rewritten as follows:

p"tl = p" —rAtv.-u. 9)

The implicit pressure ternW p™*1 in (4) can be rewritten a¥ p" —r’V(V - u), using
expression (9). Herg' is a numerical parameter that is approximately equal to the rat
betweenAt and the isothermal compressibility. In the problems studied the rangevak
100 < r’ < 10,000. Finally, the implicit equations of motion were computed to solve th
two-phase flow,

du r'
—+u" VUt — — V(v u™h
ot p
1_ 1 N+l T, N+l n+i
= SV gV [u(VU VU] R (10)

whereFZ is a volume force due to surface tension and is described in the next sectio

The augmented Lagrangian te%TV(V -u"1) ensures an implicit reformulation of the
coupling between pressure and velocity; it suppresses the complex definition of boun
conditions on the pressure, and above all it acts as a constraint in (10) to enforce
divergence-free conditiow - u = 0. In solving Eq. (10), the pressure is updated using th
explicit expression (9). The augmented Lagrangian approach (9)—(10) is a reformula
of the motion equations (3)—(4) in terms of an optimisation problem in which a velocity
pressure saddle point must be determined by an Uzawa algorithm [42]. The augme
Lagrangian algorithm can be considered a variant of the artificial compressibility meth
(Peyret and Taylor [29]), with a divergence term in the momentum equation that implici
accounts for the incompressibility constraint. This approach is simpler than a project
method, where pressure boundary counditions can sometimes be difficult to impose (Pe
and Taylor [29]). In contrast, Dirichlet and Neumann boundaries can easily be impose
the augmented Lagrangian Navier—Stokes solver.

Following the work of Angot [2] and Caltagiroret al.[5], volume and surface penalty
terms were introduced into the Navier—Stokes equations. In this way velocities wi
implicitly imposed at the boundaries ©fand in the inner domain if needed. Then, Eq. (10)
reads

F U VUt BY UM — uy) — CV(V U
= _1Vp 4 g— 1V (VU 4 VTU)] 4 R (11)

3‘;";1 = BS(u"! — u,) - n on the boundary of the physical domain

wheren is a normal to the boundaries 6f andu, is a reference velocityd), and B}
are diagonal matrices. Their compone®$' and BS' are respectively volume control
parameters which are used to impasgin a velocity control volume and surface control
parameters enforcing the boundary conditionsforWhen BY! is set equal to infinity,
the implicit solution of expression (11) involveg+! = u.,. For 0< BY! < 400, the
numerical solution corresponds to a hybrid value deduced from the equilibrium betwe
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the mechanical constraints and the reference velocity. The penalty term is inactiv@jhen
is set equal to zero. Dirichlet boundary conditions are easily imposed by sBfting +oo,
whereas Neumann boundary conditions are obtained by s&fihg- 0. By analogy with
the theory of thermal exchangess0B$' < +oo is associated with Fourrier-like boundary
conditions.

To approximate the differential form of the equation of motion (10) a second-order Eu
scheme, or GEAR scheme, was used on the time derivatives while a third-order QUI
scheme (Leonard [22]) was applied to the nonlinear convective term and a second-o
centred scheme was chosen to discretize the viscous and the augmented Lagrangian t
Aniterative BICGSTAB (Bi-Conjugate Gradient Stabilised) algorithm (Van Der Vorst [50]
was chosen to solve the linear system generated by the discretization of (10). In free sur
flow problems the spatial discontinuity of the characteristics through the interface indu
large off-diagonal terms in the linear system. Because of this, when the rafipg or
n1/ o assume values much larger than 1, efficient preconditioning is required to ens
the convergence of the BICGSTAB iterative method. The Modified Incomplete LU (MILU
algorithm of Gustafsson [14] has been used in this study. Even with strongly discontinu
characteristics at the free surfage {og > 10% or 1/1o > 107), the Navier—Stokes solver
provides precise solution, with a divergence-free velocity field. Different solutions of t
Rayleigh—Taylor instability problem are presented in Fig. 1. For strong viscosity ratic
a hybrid augmented Lagrangian/projection method can provide more accurate soluti

S I PPt ronssnras
O R T,

FIG. 1. Numerical simulation of a two-dimensional Rayleigh—Taylor instability on a 2220 grid. The
initial perturbation is 10% of the domain height. The viscosity is the same in the two fluids. The ratio between
heavy and lighter fluid densitigs /oo is 2 (0o = 500 kg- m~2 andp; = 1000 kg- m~3) and the Atwood number
is A = 0.33. The velocity field and the free surfad@ £ 0.5) are presented with We +o00, 1000, and 100 in
(a), (b), and (c) respectively. As predicted by several studies (Elgowainy and Ashgriz [10]), the surface ten:
stabilises the interface and limits the instability growth.
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(Vincent and Caltagirone [43]). In the following sections, the augmented Lagrangian sol
(9-10) at time(nAt) is referred to as\L".

2.2.3. Surface tension discretizatiorfollowing the CSF method of Brackbdt al. [4]
and Lafaurieet al.[20], we can write the surface tension as a volume force according to t
density,

1 1
C* = ShL é(PHl,j + pi—1j + i j+1+ Pij-1),
(12)
o VC* ( VC* )
Frs=—0— V. ,
™ pm [o] Ives|

wherepn, is the arithmetic average betweggand p1, [p] is the density jump across the
free surface, anfiC*|| is the L2-norm of C*.

This formulation is very convenient because, on a fixed Cartesian grid, the two-ph
flow is only characterised by the colour function as a unique fluid with variable physic
characteristics and the free surface location is not tracked explicitly by such a meth
The volume surface tension method (12) avoids calculating the geometrical propertie
the interface such as the curvatureThe main drawback of the Continuum Surface Force
(CSF) method of Brackbikt al. [4] is the generation of spurious or parasite currents ne:
the free surface. When either viscosity or gravity dominates the dynamics, the surf
tension effects are negligible and the parasite currents are insignificant. However, in cel
situations, such as bubble instabilities, the capillary effects are dominant and the spur
currents generated can destroy the numerical solution in near-equilibrium configuratic
The discretization of the surface tension (12) can be directly applied to the phase fihctio
However, to limit the production of parasite currents near the interface (Laftaig20]),

a smoothed functiof* is used instead df in expression (12). The local character of the
method is extended over four or five cells near the free surface by repeating the smoot
operation four times.

Contrary to Brackbilet al.[4], who use finite differences to discretize the surface tensio
force on a MAC grid, Vincentt al. [44] use a mixed finite differences/finite volumes
discretization to obtain an approximate expression of (12). Working on a velocity cont
volumeV,, they considepa[Vc—ﬁ to be constant o, whereas the divergence tervh-
(%) is integrated on the surface & using the divergence theorem of Green anc
Ostrogradsky. In summary, for thecomponent, the discretization &k is expressed as
follows:

VC eright NXIeft
- _V. V—C” =-V.n= —
I AX \/ erzight + Nyrzigm AX Nxéh + Ny|2en

N N
+ Yup _ Ydown , (13)
Ay] \/ NXSD + Nygp ij Nxgown + Nysown
o pimazg G —Cap)
] pm AX n

Fsr=—

The two componentsNy, Ny) of the normal to the free surface are expressed on the rigt
left, up, and down interfaces of each discretization control volume. On the control volul
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(@i, j), they are defined as

G —Cf | G -Gy

N . = )
ight 2AXi 11 2AX
N _ Cifj-&-l - Ci*—l$j+l CI>‘j] - Ci*—l,j
Xop 2AX%; 2AX%; ’
N _ Cl*j - Ci*—l,j Ci*—l,j - Ci*—2,j
Xeft 2AXi 2AX%i_1
NX _ Cl*j - Ci*—l,j Clﬂjj -1 Ci*—l.j—l ’
down 2AXi 2AX (14)
N, o St =G G =G
Yright 2Ay] 41 ZAyJ ’
No — Cim—GC5  CGlyjmi—Gly
Y 2AYj41 2AYj 41
Ne  — Clijvni—CGlyy CGlyyj -Gy
et 2AYj 41 27y, ’
N _ Cl*j - Cixjj—l + Ci*—l,j - Ci*—l.j—l.
Ydown ZAyJ 2ij

According to the second componentpfthe expression of the surface tension force (12) i
directly obtained by a linear combination of the subscripts in Egs. (13) and (14). This fi
mulation was successfully used on several three-dimensional low Weber humber probl
such as the liquid droplet impact on a liquid or a solid substrate (Vireealt [45]). The
influence of the surface tension on Rayleigh—Taylor instability is presented in Fig. 1 as
example of a two-phase flow simulation.

3. ONE CELL LOCAL MULTIGRID METHOD

3.1. OCLM: Local Mesh Refinement Algorithm on One Cell

The One Cell Local Multigrid (OCLM) method is constructed with the Navier—Stoke
solver and the interface-tracking algorithm ‘AL IT". However, it can be used to solve any
equation with any solver [46—48]. A natural way to improve the accuracy of free surfa
problem simulations, while also limiting the computational time and memory costs, is
refine the grid near the interface. Nonuniform meshes can produce inaccurate solut
or generate large algebraic systems. Using the local character of multigrid methods,
have developed an adaptative local mesh refinement algorithm. At each gridl (exel
0,1, ..., max), SmaxSubgridsG, s(s =0, 1, ..., Snax) are generated with mesh spacimg
The coarsest grid i&o. It initially contains all the necessary information and represent
the whole calculating domain. As illustrated in Fig. 2, a fundamental property of the loc
mesh refinement is the following:

Vs, G s C G_1. (15)

In previous studies of Berger and Collela [3], Caltagirenal. [5], Khadraet al.[19], or
Angot et al. [1] on local mesh refinement methods, rectangular parcels containing me
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FIG. 2. Example of local mesh refinement with the OCLM method.

coarse grid points were refined. In contrast, in the OCLM method, local refinement occur
a control volume around a single coarse grid point verifying a refinement criterion descril
below (see Fig. 2). This technique minimizes the number of refined points and the mem
cost. Moreover, as explained by Berger and Collela [3], the use of rectangular grids is v
convenient because the calculations can be carried out with an identical solver at eac
the different grid levels.

A criterion related to the distance of a point from the free surface is used to build t
multigrid architecture:

Crphys: IVC]. (16)

If Crpnys = 0 on each side of coarse CMP‘S centred at a pressure node, no refinement i
carried out in this cell. If Giys > 0 on one or more sides, the free surface crosses the ¢
and a 9-point refinement, illustrated in Fig. 2, is performed in this cell. The coarségisd

scanned and a set of33 subgridsG; s is built with a grid stegh; = hg/3. An odd cutting

of the coarser cells in each space directior, 3 for example, is essential because it allows
a natural connection between the subgrids, as shown in Fig. 2. Thanks to the perfect joi
of the refinement cells and the explicit character of the LWT algorithm, the evolutions of t
free surface can be described at each of the different multigrid levels maintaining the stab
and the precision of the interface capturing method. A local refinement procedure is t
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performed on eac; s subgrid in the same manner as@ga The subgrids are thus refined
recursively until the grid step becomes approximately equal to the smallest lengthscal
the problem considered, corresponding to a “precision criter@p” Initially, the whole
multigrid structure is built according to the interface positionGnand the exact position
of C is imposed at each multigrid level. By knowing the distributiorCobn G, s and by
calculating the velocity field on this grid, the interface tracking algorithm can be direct
applied on the 3« 3 fine gridsG, s to obtain the new distribution of the phase function
C. This procedure is possible thanks to the explicit character of the LWT algorithm.
the dynamics and the geometry of the interface change, the multigrid solver can track
interface in time and space by refining the grid on several levels when either the phys
criterion Cipys OF the precision criterio p have been verified at coarse points. With this
step undertaken, the phase funct®is initialised on the subgritlby projecting the finer
values ofC onto eachG s.

Because of the incompressibility condition, the fine grids need to be coupled with t
coarse grids to achieve the implicit solving of the motion equation. The Navier—Stok
equation system is first solved @y. Next, p andu are initialised on eacld; s by means
of a classic Q1 interpolation operator (see Appendix A). Composite boundary conditio
described in Section 3.2, are used on the boundari& gfto ensure the conservation of
the mass and momentum fluxes. The Navier—Stokes equations are then solvegg the
subgrids. This procedure is repeated on all of the multigrid levels.

The solution from a fine grid solution can be transferred back to the previous coarse ¢
(G) to G|_1) using a direct injection procedure,

VX, ¥) € GINGi_1, ¢ra(X, y) = (X, Y), (17)

where ¢ represents an unknown variable of the problem sucl€ap, or one of the
components ofi. This reverse procedure is referred to as a restriction step. In this w
the problem can be solved again @p to take into account the corrections brought abou
by the restriction step on the whole coarse grid solution.

Another procedure, which has been used in this article, is the full weighting interfa
control volume restriction FWICV (Hackbush [15], Laugiet al. [21]). It consists of
estimating the phase function distribution on a voluje!s as the sum o€ on theG; ¢
subgrids,

c o x,y) =

1
—_— C(x, y)dv, 18
S( I—1,5) Z /VC"S/ (X y) v ( )

C e F\’“ -1s

where R = {s'//V!"1s N V]S £ ¢} is the restriction space betwed® and G| i,
C'-18(x, y) is the projection of the phase function on a calculation donwdin's, and
S(V!=1s) is the surface of a control volume &_;. Thanks to (18), the fluid rearrange-
ment is conservative at each multigrid level and the resulting dynamics on the coarser g
are coupled to the dynamics on the finer ones.

3.2. Composite Boundary Conditions (CBC)

The computation of the discrete Navier—Stokes problem (11) relative to each fine ¢
G s requires the definition of boundary conditions which are compatible with the solutic
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-  discrete component of u.,

A discrete component, of u,

FIG. 3. Discrete unknown variables in a control voluig® located at a boundary @; s.

on Gi_;. The 3x 3 fine discrete domains are extended to:a 5 mesh to deal with the
boundary conditions, as shown in Fig. 3. A classical technique applied in several mt
grid methods (FIC [1], FAS [39], or AMR [36]) consists of imposing honhomogeneot
Dirichlet boundary conditions derived from the coarse grid solution'( p'—3),

I—-1,prol ; —

uy if n = ny,

u|,5 N = { -1 pro| . (19)
uy if n = ny,

wheren is the unit normal to a boundafy s of G, s, Ny is a unit normal in thex-direction,
andny is a unit normal in thg-direction. The velocitieg), "™ anduy P are respectively
the interpolated values af;* andu';l. Inthe OCLM method Dirichlet boundary conditions
(B! = +00) were imposed using a Q1 interpolation procedure. However, the small si
of the 5x 5 subgrids leads to incorrect solutions if this method is used. In particular, t
interpolation operator does not preserve the divergence-free property (see Appendix E
Choosing values of surface control parameters varying fromitoand coupling these
values with volume control parameters of the same order, one notices that for average ve
of BS' andBY' (from 1C? to 1(F), the numerical solution is not restricted to adopting &
direction normaltd s and therefore is greatly improved. In this way, to relax the constrain
at the boundaries of eadh s, the numerical idea is to introduce a new type of boundar
conditions, called composite boundary conditions (CBC), into the Navier—Stokes equa
system. The CBC couple in the discrete motion equation system (11) Fourier-like conditi
in the direction normal to the boundalry s of G, s with hybrid volume conditions on the
velocity component which is tangential I§ s. The principle of the CBC is to be able to
impose each component of the velocity on the boundaries in a coupled way. The C
suggest the direction of the flow at the boundaries of the calculation domain. This contr:
with the classical boundary conditions that impose either the flux (Neumann condition)
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one component of the velocity (Dirichlet condition), which are scalar components of t
flow.

On the fine grid<5, s, solving the discrete Navier—Stokes equations (11) with the CB!
requires the definition of control paramet&$' andB$' as well as reference velocitie,
associated with them. Each componentigfon G, is defined as the average interpolation
of the coarse grid values to maintain the coupling between the multigrid levels. The con
parameters are estimated by relating the concept of vectorial boundary conditions to
physics included in the Navier—Stokes model, by means of the rate of deformation ter
D and the viscous stress tensor

o (Tx,x 7v'x,y>
T = .
Tyx Tyy
They are defined as follows:

1
D= E[Vu +VTu],

T =2uD.

(20)

If we assume that the symmetrical components of the viscous stress tensor are prese
between two multigrid levels, we can estim&g' andB3' on the boundaries of ea@ s.
The finite volume approximation of - 7 is developed on a fine control volunvgs around
point (3i, 3j) (see Fig. 3). The normal contributiol, , of the viscous stress tensor in
the Navier—Stokes equations is expressed on(8ide % 3j) of V'S, for the first velocity
component:

U, 13+1/23]
Txag = / V-tdv= / Txx - Ndy = [_M_X:| . (21)
Ve T OX J3i_1/2.3]
From the coarse grid, the interpolation operator leads to

| — 1 2
=3u +3uxi,j’

X3i+1,3 Xi+1,j
| _
uX3i.3j - uXi,j ’ (22)
| _ 2y 1
uX3i—1_3j - 3uXi,j + 3uXi71J

In a discrete form, the following is obtained:

hy

| | |
T _ UX3i+1.3j - 2u><3i.3j + ux3i—1.3j
X3i,3j — —K hl

1,,-1 2,,-1 1,,0-1
=4 l§UXi+1.j - §uXi.j + §uXi1.j‘|

-1 _ 1,-1_ | 1y-1 _ 241 _ 1
Xit1,j 3uxi‘j ux3i71,3j + quafzsj ——y 9uXi+1,j guxi—Lj 3ux3i71,3j
3h| hI .

1
éu

=—u

(23)

In Eq. (23), the velocity),, , ., corresponding to side i(3- £,3j) of V!'s, is exterior to
G s (Fig. 3). To determine this velocity, the viscous stress is modelled as a flux between
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fine grid and the outside region. As was explained in Section 2.2.2, this method consist
estimating a flux based on a Fourier-like control parameter and a reference velocity,

au
- B_Xx = BS’*(UX — Uy 00),

au (24)
BXX = Bj’l(ux — Uy.00)s

whereBS* and BS! are control parameters amgf! = BS* /.. On side (3

S* /L. i — % 3j), the
discrete expression of (24) is given by
[ [ ul
u +u
_( = h| e > - B&l( X3|+1/23J Ux,oo) = B&l<—x3I = Z—Xa 8 Ux,oo) . (25)

Estimating the reference velocity, , according to coarse values

1
| Y -1, -1
ux3i—1,3j - uxi,j +zu

6 6 Xi-1,j° (26)

using Eg. (25), and interpolating by the Q1 operator leads to an approximation of the
outside veIocitw'XSiim according to the coarse velocity fialé:

BS' 1 2Bst 1 Bs!
| -1 -1
uX3\—1,3J < ; - h|> = UX‘.i <6u - h|> + uxi—l,j <U) . (27)

6

Combining Egs. (23) and (27), we obtain an explicit expression binding the surface con
parameteBS! on the fine grid and'*:

T><3i ,3

_ lu'xl Lo+ Ut — 5(2B5th — 6/3B3th — 6)uy !

— 3(B3*hi /[3B5h — 6] )u)?,
hy
14-1 _ —u' 14 4yt
_ 37Xi41,j X, j 37X —1,j
= M[ h (28)
By identifying the velocities in expression (28), the following is obtained
-1 -1 -1 -1 u-1 /gt
le _ 1 (3UXI j 2uxl+1| - uxl 1]) 1 (3 2uxl+1|/uxlj XI -1, quJ )
u - 9
hl (2u'X| 11 - UIXH:IiJ - uIX| Ji]) ( U|XI+:I;lJ/uxI] Ule ]ij /uxlj ) (29)
2
B # o
Assumingu,®  u-!, anduj ! - to be of the same order,
i+ ] i, -1
u\ -1
05< 3 < 15
N (30)
u\—l
0.5 < S

< e <15,

%, j
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the surface control parameter is estimated to be

3
sl
B~ ~ TR (31)

The demonstration developed in expressions (21)—(31) can be carried oy farzy y on
any fine control volume on the boundaries@f, with identical conclusions.

To couple the velocity components in the Navier—Stokes solution a volume control |
rameterBY-2 must be defined in the tangent direction to the boundaryc'éf According
to the second component of the velocity, a Fourier-like flux condition gives rises to t
following expression:

au
_“Tyy = BS3?(Uy — Uy.o0)- (32)

In a dimensionless form, this reduces to

fUg dUy _

L By BS2 Ug(Uy — Uy o), (33)

whereL’ is a characteristic length, is a reference velocity, anB$? ~ 3/2h.

The symmetrical componeny, , of the viscous stress tensor has to be corrected in tf
momentum equations (4) with a control volume param@gt to check its compatibility
with (33). In the Navier—Stokes equations, the second symmetrical component of the visc
stress tensor is related BY:? as follows:

92Uy

—/La—yz = Bl\j’z(Uy — uy,oo)' (34)

The dimensionless form of expression (34) is

1o d2u
—?Wzy - Bl\jyzuo(Uy - Uy,oo). (35)
Identifying the fluxes in (33) and (35), we relate the volume and surface control parame
by

L'BS?
L2

BY? = (36)

In order to be consistent with the metrics on the solving Giid, the characteristic length

is chosen to be equal to the widih 1 of G, 5. The centred discretisation dfly/dy induces

L’ = 2L. To summarise, assuming the conservation of symmetrical components of
viscous stress tensor between two multigrid levels, surface and volume control parame
can be estimated independent of the solution as follows:

3
B ~ ——,
! 2h,
2B

hi_1

37)

BY! ~
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In the present approach, thanks to scalar control parameters (37) acting in all the s
directions, vectorial characteristics of the flow are imposed on the boundaries of the
calculation domains3, s. In the following sections, the validity of the CBC and their
superiority over the classical Dirichlet or Neumann conditions will be demonstrated.

3.3. Convergence Checks on the Self-Similar Vortex Problem

The self-similar vortex problem consists of adding a source ®Mmy) = (S(X, y),
S,/(X, y)) into the Navier-Stokes equations:

_ (7%u ax\ . [(my
S(X,y) = _(T) cos<7> sm<7>,

(7P L [(7x Ty
S,y = (T) sm<7) 005(7)

The velocity field is initially zero and evolves toward a vortex due to the addition of tt

source term (38). An analytical solution is obtained for the set of equations (3), (4), ¢
(38):

(38)

Uy (X, Y, t) = —cos(%x) sin(%y) [1- e‘”z’“/zﬂ,

Uy(X,y, 2) = —sin(Zx) cos(];y) [1- ef”zf“/z’)}, (39)
pX,y,2) = —g [cos(%x) + cos(%y)] [1- 2eTHt/20 e—ﬂzld/p].

Assuming the calculation domain to be a 1-m square box, the self-similar vortex probl
has been restated by introducing an artificial interface, defined by the following rectangt
colour function distribution:

1 if0.275<x <0.725and B75< y < 0.625
Cx,y) = (40)

0 else

Expression (40) is used to evaluate the OCLM method on an interface tracking test,
refining the grid in the regions whe¥eC # 0. On one side, the colour (40) is advected with
the exact velocity field. On the other side, the Navier—Stokes equations and the inter
tracking are solved using the local mesh refinement. Comparisons are presented ol
velocity field and the interface position. The exact position of the phase function shap
deduced from a Lagrangian advection of particles, placed on the interface.

The absolute errdEy is thel . norm of the difference between the calculated and exa
velocity field. Figure 4 shows howy, changes with the number of calculation poiht®n
the coarsest grid. The calculations illustrate second-order convergence of the solver ol
coarse grid, whereas convergence rates of 1.5 and 1.8 are found respect@elsaaG..
These were computed at each grid level with a fixed value of the surface control param
BS! equal to 32h;. The differences in the convergence rates can be explained by the v
local character of the method, whose convergence is only conditioned by the interpola
of solutions from coarse grids. However, the behaviour of the multiscale OCLM solver
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N

FIG. 4. Behaviour of the absolute errdi, on the velocity for several coarse grid%, 8%, 40?, 8¢?, and
12C.

satisfying. By starting on a coarse grid, it is able to refine the flow resolution at the cell sc
maintaining a convergence rate of up to 1.5. In the present problem, in spite of the interf
tracking, the dynamic generation and removal of fine cells does not affect the quality
the solver. Moreover, thanks to composite boundary conditions (CBC), the divergence-
property is fulfilled with a 103 computer error at all grid levels and the solution converge
to the analytical solution.

To verify the effects of the boundary conditions on the multigrid solution, addition:
tests were carried out on the single-phase vortex flow problem. First, the behaviewur of
was examined while the control parameters were modified. Parafgtewas defined
as the ratio between the surface control paramBg#, used in the computation and the
theoretical oneB3'. According to expression (37), it is estimated by

2 B(:omphl

: (41)

Bnp =
An example considered was the solution of the self-similar vortex on two multigrid leve
with a40x 40 coarse grid. Figure 5 shows that the maximum error corresponds to Dirich
(Bnp = +00) and Neumann boundary conditiofByp = 0). The OCLM method reaches
its best performance wheByp is more or less equal to 1, which confirms the theoretica
results developed in the previous section.

The level of accuracy of the OCLM method is measured by comparing the evolution
the volume repaired by the phase function while the grid is being refineded e the
difference between the initial volume and the volume provided by the numerical solutic
The convergence of the OCLM method to the theoretical volume is illustrated in Fig. 6.
second-order convergence in space is reached on all the multigrid levels. The local n
refinement ensures better volume conservation from a coarse grid to a finer one. At
same time, the geometrical description of the interface is improved. Starting witlk 220
coarse grid and carrying out the calculations on two multigrid levels (Fig. 7), one can res
a very accurate solution, being almost equal to the analytical one.
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FIG.5. Behaviour of the absolute err&, on the velocity for several values of the surface control rBfjg.
The simulation starts on a 4040 coarse grid.

The number of time steps is defined to Meand the number of calculation points at a
grid level asNcp. Figure 8 shows that the multigrid solution presented in Fig. 7e is 80
less expensive in computational nodes and thus also in memory, compared to the equiv
single-grid solution.

3.4. Validation of the OCLM Method on Two-Dimensional
Scalar Interface Advection Tests

This section examines the OCLM method using several advection tests where no Nav
Stokes solution is required. When the velocity field is defined analytically, the difficul

-1

10
\
10* \
o
Ui,
q 0-3 \ N i
NN
® \ A
w \\ \\.\\
N,
4
10 N
\ .
\ N
- \ »
" +— Coarse grid G, \
107 E{e-- Multigrid level G, N
«—- Multigrid level G, .
1 10 100 1000
N

FIG. 6. Convergence study on the volume conservatBgis presented for several coarse grids: &7,
407, 8%, and 126.
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(a) (b)
(c) (d)
=i
Lu! ::l
3 H
(e) f)

FIG. 7. Multigrid simulation of the self-similar vortex problerts, is a 20x 20 grid. A three-level solution
is presented after large deformations have been inducet£00.2 s. (a), (c), and (e) solutions respectively
on Gy, G;, andG,; (b) diffusion of the multigrid solution o165, (contours 0.01, 0.5, and 0.99 are presented);
(d) local mesh refinement structure at the final calculation step; and (f) analytical solution.

of the motion equation resolution is avoided and the intrinsic improvements on the int
face tracking, provided by the local multigrid treatment, can be highlighted. Two differe
scalar velocity fields were considered: Zalezak’s problem and the vortex flow problem. T
domain lengthL of the square calculation domain is 1 m. In the first tesis defined



ONE-CELL LOCAL MULTIGRID METHOD 191
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FIG. 8. Number of calculation points at each multigrid level. AR®0 coarse grid and two multigrid levels
are considered.

as

u_n L
x—2y2,
u, = = x L
Y72 2 )

whereas in the second one, the velocity field is chosen to be as in the paper of Rider
Kothe [31],

(42)

Uyx = cog4m X) cog4ry), (43)
Uy = sin(4rx) sin(4ry).

The velocity field on the fine grids is deduced from the calculation of the divergence-fi
solutions (42) and (43) at each fine grid le@l

3.4.1. Zalezak'stest.A constantturning velocity field advects a slotted circle of aradiu
of 0.2 m, centred in a I-m-long square calculation domain. With & 3D coarse grids it
is clear that the resolution provided By is too weak to ensure that the problem is precisely
solved. Indeed, the circle definition is very approximate, in particular near the sharp corn
Atthese points, the interface-tracking algorithm requires at least two definition cells to wt
effectively, unless some diffusion is generated by the TVD scheme. The OCLM method \
carried out on two multigrid levels (Fig. 9) to remedy the previous numerical drawbacl
The refinement levels were defined from the beginning of the calculation using criterion (
and the exact phase repartition was initially enforceGeandG,, as illustrated in Fig. 9a.
The differences among the three phase distributions are quite marked @t The first
advantage of the OCLM method is that it takes the initial distributio@ afore effectively
into account. After one turn of the slotted circle, the interface returns to its initial positic
The numerical solution provided by the coarse grid is far removed from the analytical
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FIG.9. Multigrid simulation of Zalezak'’s problent, is a 30x 30 grid. Presentation of a three-level solution.
(a) Initial conditions on the different subgrids and velocity field@s (b) Local mesh refinement on the three
grid levels after one turn of the slotted circle. (c) Interface posit®r=(0.5) on each grid level after one turn.

(d) Zoom on a sharp corner; visualisation of the OCLM solutiorGgrand of the equivalent single-grid solution
on a 270x 270 grid.

(Fig. 9c). However, the multigrid solutions @y andG, are satisfying. They converge to
the exact solution of the problem. If the fine grid solution at level 2 is closely examine
the difference between this solution and the equivalent solution, deduced from a sir
270x 270 grid calculation, is less than half a fine mesh (Fig. 9d). The local character
the OCLM method is demonstrated in Fig. 9b).

A geometrical improvement ratiBg, is defined as the ratio of the number of calculation
points N'Cm;* on the multigrid level$s, throughG,_, to the number of computation nodes
NES of an equivalent complete single-grid solution. In the present test (Fig. 10a), t
averageRg is equal to 0.28. The best improvement would corresporigsicdeing equal
to 0, whereadis, greater than or equal to 1 would represent an increase in the numbet
computational nodes to be solved. The ratio of the multigrid memory cost Mm to that
the single grid Ms is less than 1 in all the multigrid simulations computed. This represe
a significant gain which can be fully exploited in real two-phase flow simulations. Owir
to the explicit character of interface tracking and the low time cost of thealgorithm,
the multigrid solution proves more expensive in time. As described in Fig. 10b, the ratio
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FIG. 10. Comparisons between the multigrid and the single-grid computations of Zalezak's proble
(a) Evolution of the number of calculation pointise corresponding to a three-grid-level solution. (b) Normalised
calculation time and memory costs for several multigrid simulations.

the multigrid computational time Tm to the single grid one Ts is greater than 1 in all t
Zalezak’s problems solved.

3.4.2. The vortex test.By the same calculation domain as in the previous test, a col
centration circle having a radius of 0.15 m, initially centred at the point (0.5, 0.75), w
strongly stretched in a complex symmetrical vortex velocity field defined in (43). Outl
boundary conditions were computed @g. An almost complete analytical solution of the
vortex problem has been calculated by Rider and Kothe [31] using a Marker method w
a great number of particles. They demonstrated that the best-performing interface trac
algorithms, such as the level-set technique or the PLIC VOF methods, can only accure
reproduce the larger space scales of the solution. Artificial numerical surface tension m:
the VOF method tear the fine scales of the interface, whereas in the level-set technique
mass loss is very high and the numerical diffusion involves the splitting of the fine-scale f
tures. In the same way a TVD-like method is shown to be poor in representing the fine p
of the interface. On a reasonable single grid, Rider and Kothe explain that only a powe
particle method can deal with strong stretching problems. However, a precise solutio
expensive for a scalar test in two dimensions and becomes unrealistic to implement in tl
dimensions, where the number of particles is very high and the interpolation procedt
difficult to carry out.

The OCLM method, thanks to its local and multiscale character, can improve the hand|
of strongly sheared interfaces. A three-level multigrid solution is presented in Fig. 11. H
Go is chosen to be a 7R 70 grid. The initial condition and the velocity field @by are
presented in Fig. 11a. As shown in Fig. 11b, the resolution provided by the coarse ¢
is insufficient to accurately solve the problem presented in [31]. In contrast, the multig
solution onG; andG; (see Figs. 11d and 11f) successively captures all the features descri
by the analytical solution of Rider and Kothe. The first multigrid lev@l, makes the
solution more precise in its upper part, but the lower part of the solution is not captur
One additional refinement level,, supplements the numerical solution where very fine
structures are captured in its lower part. A comparison between the multigrid solut
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Multigrid simulation of the vortex problen®, is a 70x 70 grid. A three-level solution is presented

after large deformations have been induced. (a) Initial conditions on the different subgrids and velocity@gld on

FIG. 11.

0.5) onG, after deformation. (c) Local mesh refinement for the final time step (only

40% of the total cells are presented for convenience). (d) Interface po<tienQ.5) on G, after deformation.

(b) Interface position@

(e) Single-grid solution on a 630 630 grid. (f) Interface position&
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(Fig. 11f) and the equivalent solution on a single 63630 grid (Fig. 11e) shows almost
identical results. The difference between the single-grid and multigrid interface position:
defined asg v . It is written as a function of linear interpolations of free surface position
on each grid segment which is cut by the interface:

— ) 0 | 0 I
ES,M - maX*] (‘ vaivj - PXTglxmaxi,amaxj + ’quiyj o Pyam3?|xmaxia3lmaxj )’ Vlmax >0
_ 0 | 0 |
= [|Pis = P e oo + 1PV = Py Bima [l oo (44)

where Px‘ﬂi’j is the linear interpolation of the interface position on the segnien? of
the single grid in the-direction. The superscriptax refers to the finest grid level in the
multigrid architecture, whereas the subscrip@ndy refer to the segments slanted in the
x- andy-directions.

Figure 12c shows the variations B§ y according to the number of multigrid levels. The

coarse grid and the calculation time are the same for all the solutions in this figge.

(a) - " (b) 25 :

56

10"

—— Tm/Ts
2oL = Mm/Ms

P Subgrid level 1
107 ——- Subgrid level 2 3
- - - - Subgrid level 1 + level 2 F]
—— Single grid 630 x 630 2
1 =
o
z 105.: §
(8]

1.0 20 30 40

(c) 1’ . . (d) 1w

e

10° /

1.0 2.0 30 4.0 1e-01 2¢-01 3e-01 4e-01 6e-01 1e+00
Number of multigrid levels h

FIG. 12. Comparisons between the multigrid and the single-grid computations of the vortex flow proble
presented in Fig. 8. (a) Evolution of the number of calculation pdiys corresponding to a three-grid-level
solution. (b) Normalised calculation time and memory costs for several multigrid simulations. (c) Local differer
on interface position for several multigrid simulations. (d) Behaviour of the volume consertgtaecording to
the nondimensional space schlg h,, with G, being a 70x 70 grid.
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is high onGy and G, owing to the poor precision provided by the corresponding grids
However, since the grid level is sufficient, the maximum local difference is very small al
the OCLM solution is comparable to the reference computation. The maximum differer
between interface positions in single and multigrid solutions is less than half a cell. Beyc
a certain number of multigrid levels, weak improvementEdn, are obtained owing to the
projection step between a coarse and a fine grid level. A higher order projection algorit
must be tested for comparison. However, it would imply a larger discretization stencil a
a loss of the local character of the refinement technique.

The convergence of the OCLM method with respect to volume conservation is plott
in Fig. 12d. A second-order convergence rate was obtained vihenas decreased from
5% onGg to approximately 0.06% 06..

As observed in the previous test and in Fig. 12a, where the avéRggis 0.24, the
maximum number of calculation points required in the multigrid solution is four times le:
than in the equivalent single-grid simulation. However, the memory and the calculati
time can be higher with a multigrid calculus than with a single-grid calculus, because of
cost of the local refinement algorithm (interpolation procedures and refinement criter
estimation) in relation to the explicit solution of a scalar problenGgn

4. EXAMPLE OF NUMERICAL SIMULATION ON CLASSICAL TWO-PHASE FLOWS

In the following sections, the Navier—Stokes equations (1-5) are solved using the OC
method. Composite boundary conditions were computed for each problem. According
expressions (37), the surface control parameBgtsvere chosen equal t¢'2h,. Moreover,
the convergence of the motion equation solver were controlled by a divergence threst
ens, as follows:

Z / |V - u|dv < ens. (45)

S= 15 Smax

At each grid levelG,, the BICGSTAB solver iterates until (45) is verified. To satisfy the
mass halance with the weakest numerical egigs,= 1013 was chosen.

The gradient of the phase functi@hwas estimated on each side of the pressure contre
volumesto detectthe volumla/é;vS requiring refining. Then, in keeping with expression (16),
a cell was refined if Giys # 0. However, this property needs to be numerically verified. A
nearly zero interface detection threshold callgdas defined, so that

Crphys > €. (46)

In this way, a local mesh refinement procedure was implemented on each control volt
V!'s where (46) was verified.

A conservative procedure of phase function restriction (18) was implemented in all t
simulations of two-phase flows presented in this section. In addition an incomplete |
preconditioner ILUD (Chapmaast al. [7]), which was more powerful than a MILU one
but very expensive in calculation time since the grid size increases, was used to solve
reduced linear systems of the multigrid lev8is 0 < | < Imax. The MILU preconditioning
is efficient on the coarse grid with suitable time costs. However, its efficiency is insufficie
on the 5x 5 multigrid calculation domains which are forced by the CBC at the boundarie
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FIG. 13. Multigrid simulation of the oscillation of an initially square drop in zero gravity. The calculation
starts with a 30« 30 coarse grids, and two local refinement levels. The interface is showrgrat times 0.0,
0.05, 0.1, 0.2, aih 1 s from left to right. The amplitude of oscillation is decreasing with time under the action c
viscosity in such a way that the drop approaches a spherical equilibrium shape.

4.1. Nonlinear Oscillation of a Two-Dimensional Drop

The deformation of a rod, or two-dimensional (2D) drop, induced by unbalanced surfe
tension forces was then computed. In a zero-gravity field, the surface of the 2D dro
perturbed and the free surface oscillates around its circular equilibrium shape. For
first test, the dynamics of an initially square drop with po = 797.88, j11/1o = 10%, and
o = 0.02361 N- m~* was studied. Two- and three-grid-level simulations were investigate
In Fig. 13, the drop shape on each grid leveltfes 0.0, t = 0.05, t = 0.1, t = 0.2, and
t = 1.0 is displayed. A 30« 30 coarse grid was chosen in this case wigh= 2.5 mm.
The results correspond closely to Brackbill’'s [4]. The drop oscillates with a period
approximately 0.4 s. With time, the oscillations become softened by viscous dissipat
and the drop shape tends to become circular. The small space sdalealows a thin
description of the interface in the sharp corner zones to be reached.

The second simulation presented in this section is of the oscillation of a cylindrical dr
with an initial radius varying as a Legendre polynomial of order 4 (see Lundgren a
Mansour [26] and Sussman and Smereka [35]). The initial interfacial position of the :
drop is defined by the radius

R(®) = Ro+ %)OPACOE(@)) sin(ws0), (47)

where

) 360
0)4 = 72.
5.04RZWe

In Eq. (47),0 is an Euler angleP, is the Legendre polynomial of order 4, aRd is the
reference radius of the droplet. The density ratio is 100: 1, the viscosity ratio is 100
and the surface tension is 0.5 M~1. Two and three grid levels were computed with a
50 x 50 coarse mesh ar@) = 0.8 mm. Figure 14 displays the motion of the viscous droy
obtained using two multigrid levels every 0.01 s. Owing to the action of surface tensi
forces, the perturbed drop oscillates in a nonlinear way with a 0.08-s period. The visco
action causes the kinetic energy to be dissipated with time. The behaviour of the dro
similar to that computed in axisymmetric problems by Lundgren and Mansour [26] usi
a boundary integral method and by Sussman and Smereka [35] with a level-set metho
Figures 15(a) and is 15c show that the diffusion of the Lax—Wendroff TVD treatment
the interface capturing step '@emains compact on four on five cells even after hundreds «
time steps. The local space and time adaptive character ofthe OCLM method is demonsti
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FIG. 14. Multigrid simulation of the dynamics of a 2D viscous drop initialised witR,sshape. The compu-
tation starts with a 5& 50 coarse grid and one multigrid level. The solution is presented each 0.01 s from left
right and from top to bottom.

(a) (b) [ AR

(c) (d) f "

FIG. 15. Drop motion after a half period. The diffusion of the multigrid solution is presented respectively fc
the first test orG; after 0.2 s in (a) and for the second test®nafter 0.04 s in (c) (contours 0.01, 0.5, and 0.99 are
plotted). The local mesh refinement structure is shown for three-level multigrid simulations of the two nonlin
oscillation drop problems in (b) and (d).
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TABLE |
Convergence Study for Nonlinear Drop Oscillation Problems

Square drop test (= 2.0 s) Legendre perturbed drop testf 0.09 s)

Grid Surface (crf) Es(cn¥) Order Surface (cA) Es(cn?) Order
Go 13.9470 0.1130 N/A 3.4401 0.0309 N/A
G, 14.0472 0.0128 2.0 3.4675 0.0035 2.0
G, 14.0586 0.0014 2.0 3.4706 0.0004 2.0

Note.The volume conservatioBs is achieved with second-order convergence rate from a coarse
grid to a finer one.

in Figs. 15b and 15d. In Table I, convergence results for the two-drop oscillation tests
illustrated when progressively finer grid levels are added. The initial surfaces of the sqt
rod and of the Legrendre perturbed drop are 14.06 and 3.471 cra A second-order
convergence rate was detected on volume conservation in both problems. At each
level, the differenceéEg  between the multigrid and the single-grid interface position wa
always less than half a cell. The sensitivity of the solution to the valu@& @ndB}, is
similar to the behaviour observed in Fig. 5. Maximum values of 0.31 and 0.2 were meast
respectively in the square rod and in the Legendre perturbed drop tests for the geomet
improvementRg. In this way, it was verified that the multigrid computation requires 70 t
80% less memory than the single-grid simulation.

The surface tension is immediately taken into account in the OCLM method by mee
of source terms which are added into the motion equations. The order of magnitude of
parasite currents is not emphasised by the OCLM method.

4.2. Solving Two-Dimensional Rayleigh—Taylor Instabilities with the OCLM Method

The Rayleigh—Taylor instability is a classical and widely studied interfacial problem th
underlines the competition between the viscous terms and the surface tension force. |
analyse a horizontal fluid stratification, with the heavy fluid lying above the lighter one, a
disturbance of the interface between these fluids becomes amplified due to gravity, bu
surface tension force tends to counteract this and to minimise the deformation of the
surface. This problem is unstable for any fluid and for any perturbation. It was decidec
simulate this problem with the OCLM method in order to emphasise the competitiven
of the local adaptative multigrid architecture in solving multiphase flows, when strol
stretching of the free surface occurs.

Three multigrid simulations were carried out on two and three grid levels (Fig. 16). T
viscosity is the same in the two fluids. The characteristics of the three problems are
following: We = +00, A= 0.11 and Re= 200 in case (a), We- +00, A= 0.33, and
Re =500 in case (b), and We +o0o0, A = 0.5 and Re= 700 in case (c). The results pre-
sented correspondto all the literature dedicated to Rayleigh—Taylor instabilities (Tryggva
[40] or Unverdi and Tryggvason [41], for example). In the different proposed simulatior
the computations consider various Atwood numbers, which correspond to small as we
relatively large differences between and pog. For any Atwood number, non symmetry of
the flow appears between the upper and the lower part of the calculation domain, owin
the increased influence of the gravity on the heavy fluid. This phenomenon can be obse
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(a) (b) (c)

(d) (e) )

FIG. 16. Numerical simulation of several two-dimensional Rayleigh—Taylor instabilities using the OCLN
method with three grid levels. The computations start on a 80 coarse grid. The initial perturbations are 10%
of the domain height. The viscosities are the same in the two fluids. The results are presented respectively a
1.5 sfor (a) and (d), 1 s for (b) and (e), and 0.75 s for (c) and (f). The interface solGtienQ(5) resulting from
a three-grid-level simulation (upper pictures) and the diffusion of the phase functi@; ¢lower graphs) are
presented. (a) and (d) We +oo, A= 0.11, and Re= 200; (b) and (e) We= +o0, A = 0.33, and Re= 500;

(c) and (f) We= 400, A = 0.50, and Re= 700.

in [40, 41]. All the computations presented in this section were carried out on a MIF
R210000 processor with a maximum CPU speed of 180 MHz.

As previously observed in the scalar tests, the local character of the OLCM methoc
perfectly controlled by means of the physical criteriops The quality of the local grid
refinement near the free surface is directly bound to the reduced diffusion of the T\
interface-tracking algorithm (see Figs. 16d and 16e) so that (16) is verified on a sn
number of cells. The almost discontinuous solution provided by the Lax—Wendroff TV
scheme (7) allows a very local mesh refinement structure concentrated on the interfac
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be obtained. The results presented in Fig. 16 (upper part) are almost comparable tc
solutions obtained on an equivalent unique grid. For instance, a maximum locaEggjor
of 0.00053 m was found between the single-grid and multigrid solutiord,on

In local multigrid computations of interfacial problems, the calculation time and tr
memory costs arise from the solution of the model on a coarse grid, where the memory
the calculation time are more or less constant during the simulations, and from the calcule
of the numerical solution on the multigrid levels. If we characterise the repartition of tl
fine cells obtained with the physical criterion gk for several computations presented
in this article (Figs. 7, 9, 11, 15, and 16), it is seen that the width of the band of fi
cells surrounding the interface represents four or five cells in the whole solution on ev
multigrid level. As the width of the band of cells wrapping the free surface is not depend
on the coarse grid resolution nor on the calculation time, for a chosen problem, the co:s
the OCLM method will only be dependent on the interface length. This assumption can
verified in Zalesak's test (Fig. 9), where the number of multigrid cells is almost constant w
time on each multigrid level. As the surface between two states of the phase function is
deformed, the length of the interface remains constant during the computations. Figur

(a) T (b) 0.20 T T
[
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——- Subgrid level G, / 045}  ——= Subgidlevel G, /
/
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0.05 ”/ 1 s
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0.15 + /
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FIG. 17. Evolution of the calculation point ratd®; on the multigrid level = 1, 2. The results correspond
to the computations presented in Fig. 16. f&)= 0.11 and Re= 200, (b)A = 0.33 and Re=500, (c)A=0.50
and Re=700.
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describes the evolutions of the calculation point Rg¢gwith time in the problems presented
in Fig. 16. In the first phase, up to= 0.1 s, a rapid increase of the calculation point
rate arises from the appearance of the numerical diffusion in the solution, whereas &
t = 0.1 s, Rg, increases regularly. As described previously, this increase is directly due
the increase of the interface length in the Rayleigh—Taylor instalilifyycan be considered
as a measure of the free surface stretching. If it is constant, the interface evolutions
slight (approximately the lengthscale of the finer grid level), whereas the deformations
considerable if it increases. In all cases, important gains in memory can be measurec
to 80%).

To study the sensitivity of the OCLM method in relation to the criterion of interfac
detectione; and the convergence threshold of the Navier—Stokes iterative sqlygra
representative Rayleigh—Taylor probled £ 0.33, Re= 500) was computed for several
values of the numerical parametersandey s. A reference numerical solution was calcu-
lated on a 270« 540 single grid. Several multigrid simulation, corresponding respectivel
t0 102 <¢ <2-101, 102 < ens < 10713 and 1< Imay < 2, were compared to the
assumed reference solution.

OCLM method remains slightly dependent on the interface detection threghold
(Table II). The difference between the multigrid and the reference numerical solution :
almost identical whenp, varies and O< ¢, < 0.2. Even for high values af;, 0.2 for exam-
ple, the obtained solution is satisfying. However, whes 0.1, a small quantity of residual
points very near the interface are not dealt with by the OCLM method. These residues
lead to nonnegligible errors in certain cases, when the free surface covers the same re
several times during the calculations. The differeBgdetween the initial volume and the
volume provided by the numerical solution remains unaffected by the vakje®@hly the
number of discretisation points is important to ensure suitable volume conservation.

The convergence threshold of the motion equation solution controls the precision w
which the incompressibility constraint is verified. Contrartpthe disparities between
solutions can be high whegys varies (Table Il). For small values efs, the results
obtained are almost identical and the local differences evolve only slightly. Howev
sinceens > 1074, Esm admits nonacceptable values. In this case, relatively importal
differences were observed between the multigrid solution and the reference one. Ow

TABLE Il
Behaviour of Multigrid Solutions According to the Interface Detection Threshold
€, and the Divergence Thresholdeys

Memory Time Esm Es

Convergence thresholds | max Fine grid (Mo) (h) (103 m) (103 m?)
€6 =102, eys =101 3 270x 540 4.17 63.42 0.50 0.055
6 =101, eys=10718 3 270x 540 4.17 60.94 0.69 0.056
6 =2-10"1, s =101 3 270x 540 4.17 58.22 0.86 0.060
6 =101 e =10° 3 270x 540 4.17 55.73 0.70 0.056
6 =101, eys =102 3 270x 540 4.17 2491 1.2 0.10

6 =101, eys=1013 2 150x 300 1.81 15.36 0.47 0.078

Note. Raylaigh—Taylor instabilities corresponding £o= 0.33 and Re= 500 are studied. Comparisons are
presented on the computational time and memory, the differEggebetween a single- and a multigrid solution,
and the volume conservatidgx.
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to the hypothesis of locally isovolume flow, obtaining a satisfying solution near the i
terface requires defining a very small convergence threshold, leading to an almost pe|
divergence-free- velocity field. The error, due to motion equation solving, induces a m
or less approximate redistribution of phase functiar-or complex multiphase flows, the
resulting error on the update of the physical characteristics can lead to unphysical soluti
In the same way, the volume conservation is damaged wieis increased.

Starting on a 56« 100 grid with one multigrid level offers better results than choosing
30 x 60 coarse grid withnax = 2, as shown in Table Il. On the very coarsex3@0 grid, the
interface location is approximate and the resulting Navier—Stokes soluti@y tsworse
than the one on the 50 100 coarse grid. When studying multiphase flow problems, as ft
all problems of strongly unsteady flows (turbulence for example), a minimum number
meshes is necessary to accurately solve the problem. This observation applies to the n
grid solver. However, several restriction procedures, which are based upon flux conserve
properties, are currently being implemented to improve the results on the coarse grid
to limit the dependency of the accuracy of the solution on the fine@rig according to
the precision of5g.

In the Rayleigh—Taylor instability considered in Table A £ 0.33 and Re= 500), the
calculation point rate logically increases whgimcreases. The behaviour B, is similar
to that described in Fig. 17. The increase in the number of calculation points aggen
varies(1072 < ens < 10719) is not presented in this article because the gaps between t
different Rg, are less than 1% in these cases.

As observed in the previous sections, a second-order convergence rate of the OC
method was measured (Table Il and Fig. 18) with respect to volume conservation

TABLE 11l
Effect of the Grid Size and the Number of Multigrid Levels |,ax on the Calculation Time,
the Memory Costs, the DifferenceEsy between a Single- and a Multigrid Simulation, and the
Volume ConservationEs for Three Rayleigh—Taylor Problems

Problem 1 Problem 2 Problem 3
A=0.11, Re= 200 A =0.33 Re=500 A=0.5 Re= 700
Number of 0 0 1 2 0 0 1 2 0 0 1 2
multigrid
levelsl nax

Resolution of 20 270 90 270 20 270 90 270 90 270 90 270
the equivalent
single-grid
solution in the
x-direction

Resolution of 180 540 180 540 180 540 180 540 180 540 180 540
the equivalent

single-grid

solution in the

y-direction

Memory (M) 3.07 26.02 135 4.88 3.07 26.02 129 417 3.07 26.02 120 3.54
Time (h) 3.11 12594 9.25 7226 212 10725 7.49 6342 1.88 9430 6.81 61.8:
Esm (1073 m) 0 0 2.7 033 0 0 25 030 O 0 24 0.27

Es (103 m?) 2.48 0.28 0.52 0.058 2.44 0.27 0.49 0.055 242 0.27 0.48 0.05
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FIG. 18. Evolution of the difference between a multigrid and a single-grid soluigp according to the
average number of multigrid calculation poiis,. N, is defined as the square root of the number of multigrid
calculation points o1&, 0 < | < lax.

interface position. Table Il illustrates a decrease in memory costs of 50 to 85%. The g
in memory are greater when the size of the coarse grid is increased. The calculation tim
the OCLM method is four to five times higher than the computational time of a single-gr
simulation whenNSS is weak. In such cases, the multigrid architecture (detection proc
dure, projection procedure, etc.) hugely penalises the computational time of the mett
However, wherNSS increases, the preconditioning of the linear system, resulting from tt
discretisation of the motion equations on a single grid, becomes very expensive and
OCLM method, thanks to it local characterx55 multigrid calculation domains), becomes
less costly in calculation time than the single-grid approach.

Finally, the results of the OCLM method are compared to the analytical solution of t
instability amplitude evolution proposed by Chandrasekhar [6]. From the linear theory,
amplitudeA of the initial perturbation of the free surface is found to increase as

A = Agcosh(nt), (48)

where Ay is the amplitude of the initial perturbation,

[277(/02 - 101)} 12
A(p2 + p1)

and

4 2 1/3
)»:471{ o )}

9(p + pf
The multigrid solution shows a marked improvement, as presented in Fig. 19. The ¢

between the solutions is small in comparison to the space scale of the coarse grid. It sh
be noticed that the differences between the numerical resultg andG,, quickly stabilise



ONE-CELL LOCAL MULTIGRID METHOD 205

0.130 T T ; T
—— Analytical solution
+—— OCLM solution
= Single grid solution
0.120 |
E
()
T
2
£
£
<
0.110
0.100 : ! . L
0.00 0.02 0.04 0.06 0.08 0.10

Time (s)

FIG. 19. Amplitude evolution of a Rayleigh—Taylor instability when \Ae+4-o0co, Re= 50, andA = 0.33.
Comparison among the linear theory, the multigrid solution With= 2, and the results on the 2040 coarse
grid.

in time and the various solutions remain, overall, very close, as demonstrated in all
previous Rayleigh—Taylor simulations presented in this article.

4.3. Droplet Impact on a Liquid Film

The impact of a cylindrical rod on a liquid film was computed in a box, open in it
upper limit. The OLCM method allows us to illustrate the spreading of the 2D drop and t
“splash” phenomenon that proceeds this. The simulations were started when the drop «
into contact with the liquid film. Initially, a constant impact velocitywas imposed on the
rod. The same liquid was considered in the drop and in the filmH_be the height of the
film, L the width of the box, andR the radius of the cylindrical rod. Figure 20 illustrates
simulations usingH = 1.6 mm, R= 1.2 mm, L = 10.66 mm, andug = (0, ugy) with
Uoy =5 m-s1. Characteristics o& = 0.075 N-m™1, p;/po = 10%, and u1/po = 10
were chosen. Just after the impact, a strong pressure was generated at the impact
which was then transmitted to the bottom of the film. In the initial stages of the spread
of the drop (0.16 ms), the free surface evolution was unsteady (see Fig. 20) and drops
ejected from the liquid film to the top of the cavity. Then, the liquid rising from the bottor
of the film created a nonlinear wave at the periphery of the spreading drop (0.32 n
Finally, the splash phenomenon was characterised by the formation of a liquid lams
(1.04 ms) that spreads from the impact point to the edge. This is due to the correlated ax
of the strong inertia arising from the dynamics of impact and the motionless liquid ne
the boundaries. The coupling between an LWT interface-tracking method and a local m
refinement method describes the merging of the drop with the liquid film and the ejectior
small liquid drops. In spite of the diffusion appearing in the shearing zone of the interfe
(Fig. 21) at the tip of the lamella, a second-order convergence was measured in this prol
(Table V). A comparison between the solution proposed in Fig. 20 and the results compt
with an equivalent single grid shows differences more or less equal to the fine grid c
Indeed, after 1.04 m&s v is equal to 3.431¢° m. The geometrical improvement ratio is
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FIG. 20. Numerical simulation of droplet impact on a liquid film. Two grid levels are computed with &
100 x 50 coarse grid. The viscosity and density ratios are equal toTHe results are presented at times 0.0,
0.16, 0.32, and 1.04 ms.



ONE-CELL LOCAL MULTIGRID METHOD 207

FIG. 21. Diffusion of the phase function 1.04 ms after impact. Isolines 0.05, 0.5, and 0.95 are present
Artificial diffusion is generated at the tip of the spreading lamella, where the shearing is important.

not presented for the drop impact problem because the same bahaviour as in the pre
sections was observed. A maximum value of 0.12 was measurd&tfor

A comparison with the results of Yarin and Weiss [51] on ethanol drops was catrri
out. LetC, be the nondimensional crown radiug, the nondimensional rim elevation of
the lamella, anH. the nondimensional bump radius. These characteristic variables of 1
flow are made nondimensional thanks to the initial radius of the drop. Correlation appe
between the observations of Yarin and Weiss and our results: the crown Gdiuslves
as a square root function of time, the rim elevatRyis linearly dependent on the radius
C. of the lamella, and the differen¢¢l; — H) evolves linearly with time.

5. CONCLUSIONS

An original one-cell local multigrid (OCLM) method for computing two-dimensional
unsteady and incompressible multiphase flows has been presented. An implicit augme
Lagrangian method has been used to solve the coupling between pressure and veloc
well as the incompressibility constraint. The motion of the interface has been modellec
solving a conservation law for a phase function by means of a Lax-Wendroff TVD scher
The local character of the adaptative mesh refinement method has been used to 1
the computations on cells surrounding the interface. The Navier—Stokes equations |
been successfully solved using the OCLM method (see Fig. 22) thanks to the developn

TABLE IV
Convergence Study for Drop Impact on a Liquid Film

Grid Surface (crf) Es(cn?) Order
Gy 0.2027 0.0123 N/A
G, 0.21364 0.00136 2.0
G, 0.21483 0.00017 2.0

Note. The volume conservatioks is studied for a three-level
multigrid solution.
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FIG. 22. Numerical simulation of a Rayleigh—Taylor instability using the OCLM method With= 1. The
characteristics of the problem are the following: Wet-oo, A = 0.05, and Re= 10. G, is a 40x 80 grid. The

left side of the picture presents the velocity field@nand the right side the comparison between the solutions
on Gy andG;. The fine-grid solution is the most stretched one.
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of new composite boundary conditions (CBC). The multigrid method has been valida
against several two-dimensional simulations including the vortex test, bubble oscillatic
Rayleigh—Taylor instability, and the droplet impact on liquid film. Convergence, memoi
and time performance have been estimated in all the problems solved.

Several objectives have been reached:

e The local mesh refinement method can track a free surface on several grid le
maintaining the refined control volumes over a maximum of four or five cells around t
interface.

e Theratio between the number of multigrid and equivalent single-grid calculation poir
is always less than 25%. Memory costs have been decreased by 50 to 80% in real two-
flow simulations.

e The OCLM solution requires less computational time than the comparable single-g
solution as soon as the problem becomes complex in terms of mesh size and intel
deformations.

e The difference between the multigrid and the single-grid solutions and the conservat
of the fluid volumes converge with second-order rates.

Future research and further developments are planned on the OCLM method:

e The methodology presented in this article is currently undergoing extension to thr
dimensions. Problems requiring large three-dimensional grids, such as the droplet im
on liquid film or the viscous liquid jet flattening under three-dimensional instability [49], a
being solved with the OCLM method. On modern computers, itis expected that grids as Ie
as 508 or 100G can be reached. Implementing dynamic memory allocation is necess:
to maximize the benefits from the OCLM method. In the present work, a FORTRAN
program was developed.

e Work still has to be carried out to improve the coupling between the fine and the coa
grids. The development of the CBC proposed in this article could certainly be completec
taking into account the surface tension and the two-phase character of the flow in the vis
stress tensor. Moreover, assuming the OCLM method to be a discretisation on a glok
unstructured mesh (locally orthogonal Cartesian grid), we are currently generalising
method to a fully implicit solver. In this way, all the grids are solved at the same time |
linking unknown variables in a unique linear system.

e The OCLM method is a universal multigrid algorithm, applicable to single fluid a
well as multiphase flow problems. The scale changes can lead to solving different mox
according to the scales of the phenomena, or to computing different numerical solvers.
can imagine solving the problem on the coarse grid with a preconditioned iterative sol
whereas a direct resolution method such as the LU one would be implemented on the
grids, where the size of the linear system is reduced. In the same way, without any partic
work, a Marker technique, a PLIC VOF method, or a level-set approach could be used in
OCLM method to track the interface, whereas a projection method could be implemer
to solve the motion equation.

e The linear systems are solved independently on the different multigrid calculati
domains, as the coupling between each fine grid is provided by the interpolation and
restriction operators. A parallelisation of the OCLM method will be carried out in the ne
future. We can expect the calculation time to be significantly reduced. Moreover, thank
the reasonable memory and calculation costs of the multigrid method, bigger coarse ¢
could be chosen in three dimensions while a suitable calculation time was maintained.
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APPENDIX A

Q1 Interpolation Operator

To initialise a scalar or a vectorial unknown variable on a sub@rigl an interpolation
operatorP _y is carried out between a coarse g@d_; and a fine grid5, . If Crppys > O at
point (i Ax, jAy) € G|_1, a Q1 polynomial interpolation, associated to the extension of
scalar fieldp on the control volume celii, j) (see Fig. 23), is developed according to the
coarse grid values af as

Sy =R-u@ 1)
_ [1 Incy Incy  Incy - 'ncy]¢|—1+ [IncX IncX~Incy} i1

" Ref Ret R% ' Ret R& M
Inc Inc, - Inc _ Inc, - Inc _
= LR L P 9)

wherei; and j, are indices on the fine gri®;, | and J are indices on the coarse grid
Gi_1, ¢'tis the scalar variable 08_1, Inc, and Ing are position indices in the refined
cell, Reris the odd refinement rate, aipgl j, is the interpolated function d@, . In the present
article, Ref is chosen to be 3.

The refinement criterion Gy defined in (16) is only estimated at the physical nodes
Consequently, as a staggered MAC grid is implemented to discretize the equation sys
the statement of the position indices jrand Ing is different according to whether we
consider a scalar or a vector unknown variable (Fig. 23). The general expression for tt
indices is

(50)

Incy =i —iRet + S,
InCy = jl - jRef‘i‘%/,

whereS, and S, are gap indices due to the MAC grid. For example, to interpalater
p with (50), S, = 0 andS;, = 0. However, ifu is expended fronG,_; to G, the indices

FIG. 23. Physical variable position and indices on a refined cell.
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TABLE V
Interpolation Indices in Each Space Direction
and Grid Definition for a Scalar and a Vectorial
Variable

Refinement of5,_; at point(i, j)

Scalar variable
Interpolation on a 3 3 grid
x-direction NodesB—1to3 +1
y-direction Nodes $—1t03j +1

Vectorial variable
Interpolation of the first component on a<43 grid

x-direction NodesBto 3 + 4
y-direction Nodes Bto 3j + 3
Interpolation of the second component on & 3 grid
x-direction NodesBto 3 + 3
y-direction Nodes Bto 3j + 4

corresponding to its first componantareS, = 1 andS, = 0, whereas the ones dedicated
to the second componeny areS, = 0 andS, = 1. When the poinii, j) is detected to be
refined onG,_1, a scalar field and a vector field are prolongated on the same refinement
but they are not interpolated on the same grid, as described on Fig. 23.

Table V provides the extension indices in each direction on the fine grid. According
the type of variable considered, the resulting grid dependenBy ef on the coarse values
is different. Nine coarse points are needed to interpolate a scalapfield

g {1 =i LIl
ld=j-1j+1

Foravectorfield, six points are expected for each component. For example, the interpole
operator on the first componentwheeds the coarse terms

" I =i,i +1,
X1,3 JZJ—1,1+1,

whereas the second component requires the use of

y l=i—-1i+1,
Yi.a \]Zl,]+1

A generic interpolation algorithm is deduced from the previous expressions and commie
as detailed in (51). The paramet&sandS, allow us to apply the same extension procedure
to any detected point and to any variable. They ensure the gap of the loop indices in
interpolation routine

For Ing, = (—-1+ S)to(1+ 25)

For Ing, = (~1+8))t0(1+25)) 1)
Pl (9! INT (Fligines) INT (Rlgbines)),
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wherei|_; andj;_1 correspond respectively to the coordindtesd j of a coarse point to
be refined and INT is the integer part of a real number.

APPENDIX B

Divergence of the Interpolated Velocity Field

We consider in this section a pressure control voILl:’iﬂeLS of G,_1 which is detected
by the refinement criterion Giys It is supposed that the solutign' 1"+, p!=1n+1) on
the multigrid level — 1 has been calculated by the solver"&L — IC™*1. The local mesh
refinement procedure generates a 3 grid G, ¢ corresponding to the cutting &f ~%S .
(u'=tn+ p'=Ln+l) js interpolated o1 ¢ with the Q1 interpolation operator presented in
appendix A. We propose to calculate the sum of the divergence of the interpolated velo
field u'-"*1 on G ¢. A discrete coordinate system is introduced @y to locate each
component of the velocity field on thex33 MAC grid: uy is characterised by the indices
ix and jx whereasy and jy describeuy. The staggered grid induces the following variation
gap of indexes (see Fig. 24):

1<iy<4andl< jy <3,
: . (52)
l<iy<3andl< j, <4

u' -3+ satisfies the divergence-free property with a nearly computer error. In this we
v - u'~tn+ljs equal to 0 onv!~1S. In discretized form one obtains

uI—1 _ul—l ul—l _ uIi—Jl

-1yl =
i+1,j i, j + Yi.j+1 Vi — O, (53)
h_q hi_q
1 ] 1 [} 3 1
] ] 1 1 ] 1
! ! : : ! !
] ] [} [} ] 1
) D I (
] ] 1
"TT7] Velocity field'on Gy | velocity fieldd on Gily, |
L e
: ' : ll,l,:’lil:/ 1 : ] —4
; K A R
: Pt : je=3
1 1} 1§ ) .
SETEE EETEE PR EEY BES PEY SR EEY CEY PV EEE ] B Jy=3
U, ;5 ] 1 '
L LN ! e U Je=
: T ! o ,
! S T e B O B B e S i e R B Jy=2
1 [} 1} [} R
' ] ol ] =
: " I " : I .
] 1 13 1
Eniaiainl It My 4 ) 1£9) D Bt St i -7!1—
A b T % | :
[ 1 ] t [ 3
] 1 ] ' ] [}
PRSI (U AU AU NI AU RN AP S NN R A A A
! : ! ; ! :
o—. : —— : @
1 1 | 1 | |
) 1 1 1 1 1
! ! ! : ! :
' :zy=1:zy=2:i,,=3: ,
fe=1 G,=2 i,=3 i,=4

FIG.24. Description of the discrete distribution of the velocity field on a coarse control volmté detected
to be refined and on the corresponding fine g@s . Indicesiy, iy, jx, andj, are introduced to discretizé"*.
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whereu,* ul-1 ul-! andul! are respectively the horizontal and vertical component
i+1, i Yij+1 Yij

of U1+l onV!I-1s (see Fig. 24). Le§;S be the sum of the discrete divergence@y.
One then obtains the expression

U —-u : Zs Uy, — Uy,.jy

) Xix 41, Xiy. Ly ,

Sj’ii — § 2 : ix+1 th LS 2 : y. iy . -1V (54)
=1 jx=1 ! iy=1]j,=1 !

X X y y

Substituting the values of the velocities deduced from the interpolation procedure, one
write expression (54) as

iV_3

-1 _ -1 -1 _ -1 -1 _ -1 -1 _ -1

s 7 uXw+1Aj uXiAj + uYi,j+1 uyl,j + uXi+1,j-1 uxi,j—l + uXi+1,j+1 uXiAj+1
h h 3h

uI—1 _ ul—l + uI—1 _ ul—l )

+ Yi-1j+1 Xi—1,j Yi+tj+1 Yit1,j

3h

(55)

Taking into account the incompressibility@f-* on V! 1S through expression (53) in (55),
we show thaSj‘ii # 0. Indeed, we have

-1 -1 1-1 -1
—u u —u
Xiaq i X X X
A= i+1,j-1 ij—1 i+1,j+1 i j+1 # 0’
hi_1
-1 -1 -1 -1 (56)
_ uy|—1.1+1 T VX1 + uy|+1,1+1 T Mg
B= £0.
hi_1

We thus have demonstrated that the interpolated velocity field does not verify the diverge!
free property orG, ¢. The error induced by the interpolation procedure on the incompre
sibility constraint is directly obtained from (56) as the sum?cdind B.
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